Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
if (!require(ReactomeGSA))
BiocManager::install("ReactomeGSA")
## ----show_methods-------------------------------------------------------------
library(ReactomeGSA)
available_methods <- get_reactome_methods(print_methods = FALSE, return_result = TRUE)
# only show the names of the available methods
available_methods$name
## ----get_method_details-------------------------------------------------------
# Use this command to print the description of the specific method to the console
# get_reactome_methods(print_methods = TRUE, print_details = TRUE, method = "PADOG", return_result = FALSE)
# show the parameter names for the method
padog_params <- available_methods$parameters[available_methods$name == "PADOG"][[1]]
paste0(padog_params$name, " (", padog_params$type, ", ", padog_params$default, ")")
## ----create_request-----------------------------------------------------------
# Create a new request object using 'Camera' for the gene set analysis
my_request <-ReactomeAnalysisRequest(method = "Camera")
my_request
## ----set_parameters-----------------------------------------------------------
# set the maximum number of allowed missing values to 50%
my_request <- set_parameters(request = my_request, max_missing_values = 0.5)
my_request
## ----add_dataset--------------------------------------------------------------
library(ReactomeGSA.data)
data("griss_melanoma_proteomics")
## -----------------------------------------------------------------------------
class(griss_melanoma_proteomics)
head(griss_melanoma_proteomics$samples)
## -----------------------------------------------------------------------------
my_request <- add_dataset(request = my_request,
expression_values = griss_melanoma_proteomics,
name = "Proteomics",
type = "proteomics_int",
comparison_factor = "condition",
comparison_group_1 = "MOCK",
comparison_group_2 = "MCM",
additional_factors = c("cell.type", "patient.id"))
my_request
## -----------------------------------------------------------------------------
data("griss_melanoma_rnaseq")
# only keep genes with >= 100 reads in total
total_reads <- rowSums(griss_melanoma_rnaseq$counts)
griss_melanoma_rnaseq <- griss_melanoma_rnaseq[total_reads >= 100, ]
# this is a edgeR DGEList object
class(griss_melanoma_rnaseq)
head(griss_melanoma_rnaseq$samples)
## -----------------------------------------------------------------------------
# add the dataset
my_request <- add_dataset(request = my_request,
expression_values = griss_melanoma_rnaseq,
name = "RNA-seq",
type = "rnaseq_counts",
comparison_factor = "treatment",
comparison_group_1 = "MOCK",
comparison_group_2 = "MCM",
additional_factors = c("cell_type", "patient"),
# This adds the dataset-level parameter 'discrete_norm_function' to the request
discrete_norm_function = "TMM")
my_request
## ----get_data_types-----------------------------------------------------------
get_reactome_data_types()
## ----perform_analysis---------------------------------------------------------
result <- perform_reactome_analysis(request = my_request, compress = F)
## -----------------------------------------------------------------------------
names(result)
## -----------------------------------------------------------------------------
result_types(result)
## -----------------------------------------------------------------------------
# retrieve the fold-change data for the proteomics dataset
proteomics_fc <- get_result(result, type = "fold_changes", name = "Proteomics")
head(proteomics_fc)
## -----------------------------------------------------------------------------
combined_pathways <- pathways(result)
head(combined_pathways)
## -----------------------------------------------------------------------------
plot_correlations(result)
## -----------------------------------------------------------------------------
plot_volcano(result, 2)
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.