Nothing
#' @title sd2gramSpectrum - Similarity of molecules by walk-based graph kernels
#'
#' @description This function computes several walk-based graph kernel functions
#' based on finite length walks and a fast implementation for input SDF file(s).
#'
#' @param sdf File containing the molecules. Must be in MDL file format
#' (MOL and SDF files). For more information on the file format see
#' http://en.wikipedia.org/wiki/Chemical_table_file.
#' @param sdf2 A second file containing molecules. Must also be in SDF.
#' If specified the molecules of the first file will be compared with the
#' molecules of this second file. Default = "missing".
#' @param kernelType Type of kernel to be used. Options are "spectrum (Spectrum
#' kernel) , "tanimoto" (Tanimoto kernel), "minmaxTanimoto" (MinMax Tanimoto kernel),
#' "marginalized (Marginalized kernel approximation) and
#' "lambda" (LambdaK kernel). See vignette for details. Default = "spectrum".
#' @param margKernelEndProbability The ending probability for the marginalized
#' kernel. Default = 0.1.
#' @param lambdaKernelLambda The lambda parameter of the LambdaK kernel.
#' Default = 1.0.
#' @param depthMax The maximal length of the molecular fragments. Default = 3.
#' @param onlyDepthMax Whether fragments up to the given length should be
#' used or only fragments of the given length. Default = FALSE.
#' @param flagRemoveH A logical that indicates whether H-atoms should be
#' removed or not. Default = FALSE
#' @param morganOrder The order of the DeMorgan indices to be used. If set to
#' zero no DeMorgan indices are used. The higher the order the more different
#' types of atoms exist and consequently the more dissimilar will be the molecules.
#' Default = 0.
#' @param silentMode Whether or not the program should print progress reports
#' to the standart output. Default = FALSE.
#' @param returnNormalized A logical specifying whether a normalized kernel
#' matrix should be returned. Default = TRUE.
#' @param detectArom Whether aromatic rings should be detected and aromatic
#' bonds should a special bond type. If large molecules are in the data set
#' the detection of aromatic rings can be very time-consuming. (Default = FALSE).
#' @examples
#' sdfolder <- system.file("extdata",package="Rchemcpp")
#' sdf <- list.files(sdfolder,full.names=TRUE,pattern="tiny")
#' K <- sd2gramSpectrum(sdf)
#' @return A numeric matrix containing the similarity values between the
#' molecules.
#' @author Michael Mahr <rchemcpp@@bioinf.jku.at>
#' c++ function written by Jean-Luc Perret and Pierre Mahe
#'
#' @export
sd2gramSpectrum = function(sdf, sdf2,
kernelType = c("spectrum", "tanimoto", "minmaxTanimoto","marginalized","lambda"),
margKernelEndProbability = 0.1, lambdaKernelLambda = 1.0,
depthMax = as.integer(3), onlyDepthMax = FALSE , flagRemoveH = FALSE,
morganOrder = as.integer(0),
silentMode = FALSE, returnNormalized = TRUE, detectArom=FALSE)
{
margKernelConvgce = 10000;
margKernelSkipSkeleton = FALSE;
if(!is.character(kernelType)) stop("kernelType must be a string")
if(!is.numeric(margKernelEndProbability)) stop("margKernelEndProbability must be numeric")
if(!is.numeric(lambdaKernelLambda)) stop("lambdaKernelLambda must be numeric")
if(!is.numeric(depthMax)) stop("depthMax must be integer")
depthMax <- as.integer(depthMax)
if(!is.logical(onlyDepthMax)) stop("onlyDepthMax must be logical")
if(!is.logical(flagRemoveH)) stop("flagRemoveH must be logical")
if(!is.numeric(morganOrder)) stop("morganOrder must be integer")
morganOrder <- as.integer(morganOrder)
if(!is.logical(silentMode)) stop("silentMode must be logical")
if(!is.logical(returnNormalized)) stop("returnNormalized must be logical")
if (missing(kernelType)) {kernelType = kernelType[1]}
kernelType = match.arg(kernelType)
#For passing...
if (kernelType == "marginalized"){
kernelParam = margKernelEndProbability;
}else if (kernelType == "lambda"){
kernelParam = lambdaKernelLambda;
}else{
kernelParam = 0.0;
}
kernelTypeIndex = as.integer(which(c("spectrum", "tanimoto", "minmaxTanimoto","marginalized","lambda") == kernelType)-1)
if(inherits(sdf,"SDFset")){
datablock(sdf) <- lapply(1:length(sdf),function(x) return(""))
aSet <- SDFsetToRmoleculeset(sdf,detectArom=detectArom)[[1]]
molnames <- ChemmineR::sdfid(sdf)
molnames2 <- molnames
if (!missing(sdf2)){
if (inherits(sdf2,"SDFset")){
datablock(sdf2) <- lapply(1:length(sdf2),function(x) return(""))
aSet2 <- SDFsetToRmoleculeset(sdf2,detectArom=detectArom)[[1]]
molnames2 <- ChemmineR::sdfid(sdf2)
} else
stop("Input must be existing SDF files or \"SDFset\" objects.")
}
inputMode <- "SDFset"
} else if (inherits(sdf,"Rcpp_Rmoleculeset")) {
aSet <- sdf
molnames <- NULL
molnames2 <- NULL
if (!missing(sdf2)){
if (inherits(sdf2,"Rcpp_Rmoleculeset")){
aSet2 <- sdf2
} else
stop("Input must be existing SDF files or \"SDFset\" objects.")
}
inputMode <- "Rmoleculeset"
} else if (is.character(sdf) & file.exists(sdf)) {
aSetList <- readRmoleculeset(sdf,detectArom=detectArom)
aSet <- aSetList[[1]]
molnames <- aSetList[[3]]
molnames2 <- aSetList[[3]]
if (!missing(sdf2)){
if (is.character(sdf2) & file.exists(sdf2)){
aSetList2 <- readRmoleculeset(sdf2,detectArom=detectArom)
aSet2 <- aSetList2[[1]]
molnames2 <- aSetList2[[3]]
} else
stop("Input must be existing SDF files or \"SDFset\" objects.")
}
inputMode <- "fileName"
} else {
stop("Input must be existing SDF files or \"SDFset\" objects.")
}
#browser()
# if sflag = 1 --> SEPARATE TEST SET
if( !missing(sdf2) ){
# 1 - data initialization
# -----------------------
# read the set of molecules
# remove H when specified on command line
if( flagRemoveH == TRUE ){
if( !silentMode ){
print("removing hydrogens");
}
aSet$hideHydrogens();
aSet2$hideHydrogens();
}
# compute Morgan labels
if( !silentMode ){
print(paste("setting morgan labels ", morganOrder));
}
aSet$setMorganLabels( morganOrder );
aSet2$setMorganLabels( morganOrder );
# set kashima probabilities if kernelType = marginalized
if(kernelType == "marginalized"){
aSet$setKashimaKernelParam( kernelParam, margKernelConvgce, margKernelSkipSkeleton );
aSet2$setKashimaKernelParam( kernelParam, margKernelConvgce, margKernelSkipSkeleton );
}
# initialize gram matrices
aSet2$initializeSelfKernel( 0.0);
aSet$initializeSelfKernel( 0.0);
aSet$setComparisonSetCopy( aSet2 );
aSet$initializeGram( 0.0 );
#browser()
if( !silentMode){
print("#### initialization Gram OK");
}
# 3 - compute the gram matrix
# ----------------------------
gramSpectrum_test( aSet, depthMax, kernelTypeIndex, kernelParam, onlyDepthMax, silentMode);
if( !silentMode ){
print("gramComputeSpectrum (test) OK");
}
# normalize gram
if (kernelType == "tanimoto")
{
aSet$normalizeTanimoto();
}
else if (kernelType == "minmaxTanimoto")
{
aSet$normalizeTanimotoMinMax();
}
else
{
aSet$normalizeGram();
}
if( !silentMode ){
print("normalize gram (test) OK");
}
if (returnNormalized == FALSE)
{
K <- do.call(rbind,aSet$getGram() )
}
else
{
K <- do.call(rbind,aSet$getGramNormal() )
}
#aSet$writeSelfKernelList( outputDir + baseName + "_test", silentMode );
#aSet$getComparisonSet$writeSelfKernelList( outputDir + baseName + "_train", silentMode ); !!!
}else{ # --> SELF KERNEL
# 1 - data initialization
# -----------------------
# read the set of molecules
# remove H when specified on command line
if( flagRemoveH == TRUE ){
if( !silentMode ){
print("removing hydrogens");
}
aSet$hideHydrogens();
}
# compute Morgan labels
if( !silentMode ){
print(paste("setting morgan labels ", morganOrder));
}
aSet$setMorganLabels( morganOrder );
# set kashima probabilities if kernelType = marginalized
if(kernelType == "marginalized"){
aSet$setKashimaKernelParam( kernelParam, margKernelConvgce, margKernelSkipSkeleton );
}
# initialize gram matrices
aSet$setComparisonSetSelf();
aSet$initializeGram( 0.0 );
aSet$initializeSelfKernel( 0.0);
if( !silentMode)
{
print("#### initialization Gram OK");
}
# 3 - compute the gram matrix
# ---------------------------
gramSpectrum_self( aSet, depthMax, kernelTypeIndex, kernelParam, onlyDepthMax, silentMode);
if( !silentMode ){
print("gramComputeSpectrum (self) OK");
}
# normalize gram
if (kernelType == "tanimoto")
{
aSet$normalizeTanimoto();
}
else if (kernelType == "minmaxTanimoto")
{
aSet$normalizeTanimotoMinMax();
}
else
{
aSet$normalizeGram();
}
if( !silentMode ){
print("normalize gram (self) OK");
}
if (returnNormalized == FALSE)
{
K <- do.call(rbind,aSet$getGram() )
}
else
{
K <- do.call(rbind,aSet$getGramNormal() )
}
#aSet$writeSelfKernelList( outputDir + baseName + "_train", false);
}
if (inputMode == "fileName" | inputMode == "SDFset"){
aSet$deleteAll()
if (exists("aSet2"))
aSet2$deleteAll()
}
try({
rownames(K) <- molnames
colnames(K) <- molnames2
})
return ( K )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.