Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----install_radiogx, eval=FALSE, message=FALSE-------------------------------
# BiocManager::install('RadioGx', version='devel')
## ----load_package, message=FALSE----------------------------------------------
library(RadioGx)
## ----radioset, echo=FALSE, fig.wide=TRUE, fig.cap = "**RadioSet class diagram**. Objects comprising a `RadioSet` are enclosed in boxes. First box indicates type and name of each object. Second box indicates the structure of an object or class. Third box shows accessor methods from `RadioGx` for that specific object. '=>' represents return and specifies what is returned from that item or method."----
knitr::include_graphics('./RadioGxClassDiagram.png')
## ----available_rsets, evel=FALSE, message=FALSE-------------------------------
RSets <- availableRSets()
## ----download_rset, eval=FALSE------------------------------------------------
# Cleveland <- downloadRSet('Cleveland', saveDir='.')
## ----printing_a_radioset, hide=TRUE-------------------------------------------
data(clevelandSmall)
clevelandSmall
## ----radiation_info_accessor--------------------------------------------------
# Get the radiation info data.frame from an RSet
radInf <- radiationInfo(clevelandSmall)
## ----print_radinf, fig.wide = TRUE--------------------------------------------
knitr::kable(radInf)
## ----radiation_types_accessor-------------------------------------------------
radTypes <- radiationTypes(clevelandSmall)
radTypes
## ----molecular_data_slot_accessors--------------------------------------------
# Get the list (equivalent to @molecularProfiles, except that it is robust to changes in RSet structure
str(molecularProfilesSlot(clevelandSmall), max.level=2)
# Get the names from the list
mDataNames(clevelandSmall)
## ----sample_meta_data---------------------------------------------------------
# Get sample metadata
phenoInf <- phenoInfo(clevelandSmall, 'cnv')
## ----print_sample_meta_data, echo=FALSE, fig.small=TRUE-----------------------
knitr::kable(phenoInf[, 1:5], row.names=FALSE)
## ----feature_meta_data--------------------------------------------------------
# Get feature metadata
featInfo <- featureInfo(clevelandSmall, 'rna')
## ----print_feature_meta_data, echo=FALSE, align="center"----------------------
knitr::kable(featInfo[1:3, 1:5], row.names=FALSE)
## ----molecular_data, fig.wide=TRUE--------------------------------------------
# Access the moleclar feature data
mProf <- molecularProfiles(clevelandSmall, 'rnaseq')
## ----print_molecular_profile_data, echo=FALSE---------------------------------
knitr::kable(mProf[1:3, 1:5])
## ----response_data_accessors--------------------------------------------------
# Get sensitivity slot
sens <- sensitivitySlot(clevelandSmall)
## -----------------------------------------------------------------------------
# Get sensitivity raw data
sensRaw <- sensitivityRaw(clevelandSmall)
## -----------------------------------------------------------------------------
# Get sensitivity profiles
sensProf <- sensitivityProfiles(clevelandSmall)
## -----------------------------------------------------------------------------
# Get sensitivity info
sensInfo <- sensitivityInfo(clevelandSmall)
## ----model_fit----------------------------------------------------------------
# Extract raw sensitvity data from the RadioSet
sensRaw <- sensitivityRaw(clevelandSmall)
## ----structure_sensitivity_raw------------------------------------------------
str(sensRaw)
## ----cellline_names-----------------------------------------------------------
# Find a cancer cell-line of interest
head(sensitivityInfo(clevelandSmall)$cellid)
## ----selecting_cancer_cell_line-----------------------------------------------
cancerCellLine <- sensitivityInfo(clevelandSmall)$cellid[1]
print(cancerCellLine)
## ----extracting_dose_response_data--------------------------------------------
# Get the radiation doses and associated survival data from clevelandSmall
radiationDoses <- sensRaw[1, , 'Dose']
survivalFractions <- sensRaw[1, , 'Viability']
## ----fitting_lq_model---------------------------------------------------------
LQmodel <- linearQuadraticModel(D=radiationDoses,
SF=survivalFractions)
LQmodel
## ----metrics_computed_from_fit_parameters-------------------------------------
survFracAfter2Units <- computeSF2(pars=LQmodel)
print(survFracAfter2Units)
dose10PercentSurv <- computeD10(pars=LQmodel)
print(dose10PercentSurv)
## ----metrics_computed_from_dose_response_data---------------------------------
areaUnderDoseRespCurve <- RadioGx::computeAUC(D=radiationDoses, pars=LQmodel, lower=0,
upper=1)
print(areaUnderDoseRespCurve)
## ----plotting_rad_dose_resp, fig.small=TRUE-----------------------------------
doseResponseCurve(
Ds=list("Experiment 1" = c(0, 2, 4, 6)),
SFs=list("Experiment 1" = c(1,.6,.4,.2)),
plot.type="Both"
)
## ----plotting_rad_dose_resp_rSet, fig.small=TRUE------------------------------
doseResponseCurve(
rSets=list(clevelandSmall),
cellline=cellInfo(clevelandSmall)$cellid[5]
)
## ----summarize_sensitivity----------------------------------------------------
sensSummary <- summarizeSensitivityProfiles(clevelandSmall)
## ----show_summarized_sensivitiy-----------------------------------------------
sensSummary[, 1:3]
## ----summarize_molecular_data-------------------------------------------------
mprofSummary <- summarizeMolecularProfiles(clevelandSmall, mDataType='rna', summary.stat='median', fill.missing=FALSE)
## ----show_summarized_sensitivity----------------------------------------------
mprofSummary
## ----compute_molecular_signature----------------------------------------------
radSensSig <- radSensitivitySig(clevelandSmall, mDataType='rna', features=fNames(clevelandSmall, 'rna')[2:5], nthread=1)
## ----exploring_molecular_signature--------------------------------------------
radSensSig@.Data
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.