Nothing
## RTCGA package for R
#' @title Create Heatmaps for TCGA Datasets
#'
#' @description Function creates heatmaps (\link{geom_tile}) for TCGA Datasets.
#'
#'
#' @param data A data.frame from TCGA study containing variables to be plotted.
#' @param ... Further arguments passed to \link{geom_tile}.
#' @param tile.size,tile.color A size and color passed to \link{geom_tile}.
#' @param facet.names A character of length maximum 2 containing names of variables to produce facets. See examples.
#' @param x,y A character name of variable containing groups.
#' @param fill A character names of fill variable.
#' @param legend.title A character with legend's title.
#' @param legend A character specifying legend position. Allowed values are one of
#' c("top", "bottom", "left", "right", "none"). Default is "top" side position.
#' to remove the legend use legend = "none".
#' @param title A character with plot title.
#'
#' @note
#'
#' \code{heatmapTCGA} uses \link{scale_fill_viridis} from \pkg{viridis} package which is a port of the new
#' \code{matplotlib} color maps (\pkg{viridis} - the default -, \code{magma}, \code{plasma} and \code{inferno}) to \code{R}.
#' \code{matplotlib} \href{http://matplotlib.org/}{http://matplotlib.org/} is a popular plotting library for \code{python}.
#' These color maps are designed in such a way that they will analytically be perfectly perceptually-uniform,
#' both in regular form and also when converted to black-and-white.
#' They are also designed to be perceived by readers with the most common form of color blindness.
#'
#' @section Issues:
#'
#' If you have any problems, issues or think that something is missing or is not
#' clear please post an issue on
#' \href{https://github.com/RTCGA/RTCGA/issues}{https://github.com/RTCGA/RTCGA/issues}.
#'
#' @author
#' Marcin Kosinski, \email{m.p.kosinski@@gmail.com}
#' @seealso
#'
#' \pkg{RTCGA} website \href{http://rtcga.github.io/RTCGA/Visualizations.html}{http://rtcga.github.io/RTCGA/Visualizations.html}.
#' @examples
#'
#'
#' library(RTCGA.rnaseq)
#' # perfrom plot
#' library(dplyr)
#'
#'
#' expressionsTCGA(ACC.rnaseq, BLCA.rnaseq, BRCA.rnaseq, OV.rnaseq,
#' extract.cols = c("MET|4233", "ZNF500|26048", "ZNF501|115560")) %>%
#' rename(cohort = dataset,
#' MET = `MET|4233`) %>%
#' #cancer samples
#' filter(substr(bcr_patient_barcode, 14, 15) == "01") %>%
#' mutate(MET = cut(MET,
#' round(quantile(MET, probs = seq(0,1,0.25)), -2),
#' include.lowest = TRUE,
#' dig.lab = 5)) -> ACC_BLCA_BRCA_OV.rnaseq
#'
#' ACC_BLCA_BRCA_OV.rnaseq %>%
#' select(-bcr_patient_barcode) %>%
#' group_by(cohort, MET) %>%
#' summarise_each(funs(median)) %>%
#' mutate(ZNF500 = round(`ZNF500|26048`),
#' ZNF501 = round(`ZNF501|115560`)) -> ACC_BLCA_BRCA_OV.rnaseq.medians
#' heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq.medians,
#' "cohort", "MET", "ZNF500", title = "Heatmap of ZNF500 expression")
#'
#' ## facet example
#' library(RTCGA.mutations)
#' library(dplyr)
#' mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) %>%
#' filter(Hugo_Symbol == 'TP53') %>%
#' filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% # cancer tissue
#' mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) -> ACC_BLCA_BRCA_OV.mutations
#'
#' mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) -> ACC_BLCA_BRCA_OV.mutations_all
#'
#' ACC_BLCA_BRCA_OV.rnaseq %>%
#' mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 15)) %>%
#' filter(bcr_patient_barcode %in%
#' substr(ACC_BLCA_BRCA_OV.mutations_all$bcr_patient_barcode, 1, 15)) %>%
#' # took patients for which we had any mutation information
#' # so avoided patients without any information about mutations
#' mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) %>%
#' # strin_length(ACC_BLCA_BRCA_OV.mutations$bcr_patient_barcode) == 12
#' left_join(ACC_BLCA_BRCA_OV.mutations,
#' by = "bcr_patient_barcode") %>% #joined only with tumor patients
#' mutate(TP53 = ifelse(!is.na(Variant_Classification), "Mut", "WILD")) %>%
#' select(-bcr_patient_barcode, -Variant_Classification, -dataset, -Hugo_Symbol) %>%
#' group_by(cohort, MET, TP53) %>%
#' summarise_each(funs(median)) %>%
#' mutate(ZNF501 = round(`ZNF501|115560`)) -> ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians
#'
#' heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians, "cohort", "MET",
#' fill = "ZNF501", facet.names = "TP53", title = "Heatmap of ZNF501 expression")
#' heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians, "TP53", "MET",
#' fill = "ZNF501", facet.names = "cohort", title = "Heatmap of ZNF501 expression")
#' heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians, "TP53", "cohort",
#' fill = "ZNF501", facet.names = "MET", title = "Heatmap of ZNF501 expression")
#' @family RTCGA
#' @rdname heatmapTCGA
#' @export
heatmapTCGA <- function(data, x, y, fill,
legend.title = "Expression", legend = "right",
title = "Heatmap of expression", facet.names = NULL,
tile.size = 0.1, tile.color = "white", ...
){
assert_that(is.null(facet.names) |
(is.character(facet.names) & length(facet.names) %in% c(1,2)))
ggplot(data, aes_string(y = y,
x = x,
fill = fill)) +
geom_tile(color = tile.color, size= tile.size, ...) +
#theme_RTCGA() +
scale_fill_viridis(name=legend.title, label=comma) +
coord_equal() +
labs(title=title) +
theme(axis.ticks=element_blank(),
axis.text=element_text(size=7),
legend.title=element_text(size=8),
legend.text=element_text(size=6)) +
theme(legend.position = legend) -> gplot
if (is.character(facet.names) & length(facet.names) == 1) {
gplot <- gplot +
facet_grid(reformulate(facet.names[1]))
}
gplot
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.