Nothing
#' @title sample.probeset
#' @description Toydata generator for probeset data.
#'
#' @param P Number of probes.
#' @param n Number of samples.
#' @param shape Shape parameter of the inverse Gamma function used to generate the probe-specific variances.
#' @param scale Scale parameters of the inverse Gamma function used to generate the probe-specific variances.
#' @param mu.real Absolute signal level of the probeset.
#'
#' @details Generate random probeset with varying probe-specific affinities and variances. The toy data generator follows distributional assumptions of the RPA model and allows quantitative estimation of model accuracy with different options, noise levels and sample sizes. Probeset-level summary estimate is obtained as mu.real + d.
#'
#' @return A list with the following elements:
#' \item{dat }{Probeset data: probes x samples}
#' \item{tau2 }{Probe variances.}
#' \item{affinity }{Probe affinities.}
#' \item{d }{Probeset signal shape.}
#' \item{mu.real }{Probeset signal level.}
#' \item{mu }{Probeset-level total signal.}
#'
#' @export
#'
#' @references See citation("RPA")
#' @author Leo Lahti \email{leo.lahti@@iki.fi}
#' @examples # real <- sample.probeset(P = 10, n = 20, shape = 1, scale = 1, mu.real = 2)
#' @keywords utilities
sample.probeset <- function (P = 10, n = 20, shape = 1, scale = 1, mu.real = 2) {
# Generating toy data
# P: number of probes (observations)
# n: number of samples
# shape, scale: parameters of the (inverse) Gamma conjugate prior
# Sample probe-specific variances from
# inverse Gamma distribution a.k.a scaled inverse chi-square
# (this is conjugate prior for variances,
probe.variance <- 1/rgamma(P, shape = shape, scale = scale) # invgam ~ 1/gam
# RPA model assumes that affinities are also distributed as
# N(0, sigmaj2)
probe.affinity <- rnorm(P, sd = sqrt(probe.variance))
# Generate real signal shape (d)
d <- rnorm(n)
dat <- array(NA, dim = c(P, n))
for (p in 1:P) {
dat[p, ] <- rnorm(n,
mean = d + mu.real + probe.affinity[[p]],
sd = sqrt(probe.variance[[p]]))
}
list(dat = dat, tau2 = probe.variance, affinity = probe.affinity, d = d, mu.real = mu.real, mu = mu.real + d)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.