Nothing
## ----style, echo = FALSE, results = 'asis'------------------------------------
BiocStyle::markdown(css.files = c('custom.css'))
## ---- echo = FALSE------------------------------------------------------------
suppressPackageStartupMessages({
library(rtracklayer)
library(Rsamtools)
library(GenomicFeatures)
library(RNAmodR.Data)
library(RNAmodR)
})
## ---- eval = FALSE------------------------------------------------------------
# library(rtracklayer)
# library(Rsamtools)
# library(GenomicFeatures)
# library(RNAmodR.Data)
# library(RNAmodR)
## ----example_files, message=FALSE, results='hide'-----------------------------
annotation <- GFF3File(RNAmodR.Data.example.gff3())
sequences <- RNAmodR.Data.example.fasta()
files <- c(Treated = RNAmodR.Data.example.bam.1(),
Treated = RNAmodR.Data.example.bam.2(),
Treated = RNAmodR.Data.example.bam.3())
## ----seqdata------------------------------------------------------------------
seqdata <- End5SequenceData(files, annotation = annotation,
sequences = sequences)
seqdata
## ----seqdata_functions, message=FALSE, results='hide'-------------------------
names(seqdata) # matches the transcript names as returned by a TxDb object
colnames(seqdata) # returns a CharacterList of all column names
bamfiles(seqdata)
ranges(seqdata) # generate from a TxDb object
sequences(seqdata)
seqinfo(seqdata)
## ----seqdata2-----------------------------------------------------------------
seqdata[1]
sdf <- seqdata[[1]]
sdf
## ----seqdata2_functions, message=FALSE, results='hide'------------------------
names(sdf) # this returns the columns names of the data
ranges(sdf)
sequences(sdf)
## ----seqdata2_subset----------------------------------------------------------
sdf[,1:2]
sdf[1:3,]
## ----modifier1----------------------------------------------------------------
mi <- ModInosine(files, annotation = annotation, sequences = sequences)
## ----modifier1_functions, message=FALSE, results='hide'-----------------------
names(mi) # matches the transcript names as returned by a TxDb object
bamfiles(mi)
ranges(mi) # generated from a TxDb object
sequences(mi)
seqinfo(mi)
sequenceData(mi) # returns the SequenceData
## ----settings-----------------------------------------------------------------
settings(mi)
settings(mi,"minScore")
settings(mi) <- list(minScore = 0.5)
settings(mi,"minScore")
## ----message=FALSE------------------------------------------------------------
sequences <- RNAmodR.Data.example.AAS.fasta()
annotation <- GFF3File(RNAmodR.Data.example.AAS.gff3())
files <- list("SampleSet1" = c(treated = RNAmodR.Data.example.wt.1(),
treated = RNAmodR.Data.example.wt.2(),
treated = RNAmodR.Data.example.wt.3()),
"SampleSet2" = c(treated = RNAmodR.Data.example.bud23.1(),
treated = RNAmodR.Data.example.bud23.2()),
"SampleSet3" = c(treated = RNAmodR.Data.example.trm8.1(),
treated = RNAmodR.Data.example.trm8.2()))
## ----modifierset1-------------------------------------------------------------
msi <- ModSetInosine(files, annotation = annotation, sequences = sequences)
## ----modifierset2-------------------------------------------------------------
names(msi)
msi[[1]]
## ----modifierset1_functions, message=FALSE, results='hide'--------------------
bamfiles(msi)
ranges(msi) # generate from a TxDb object
sequences(msi)
seqinfo(msi)
## ----results1-----------------------------------------------------------------
mod <- modifications(msi)
mod[[1]]
## ----results2-----------------------------------------------------------------
mod <- modifications(msi, perTranscript = TRUE)
mod[[1]]
## ----coord--------------------------------------------------------------------
mod <- modifications(msi)
coord <- unique(unlist(mod))
coord$score <- NULL
coord$sd <- NULL
compareByCoord(msi,coord)
## -----------------------------------------------------------------------------
txdb <- makeTxDbFromGFF(annotation)
alias <- data.frame(tx_id = names(id2name(txdb)),
name = id2name(txdb))
## ----plot1, fig.cap="Heatmap for identified Inosine positions.", fig.asp=1----
plotCompareByCoord(msi, coord, alias = alias)
## ----plot2, fig.cap="Heatmap for identified Inosine positions with normalized scores.", fig.asp=1----
plotCompareByCoord(msi[c(3,1,2)], coord, alias = alias, normalize = "SampleSet3",
perTranscript = TRUE)
## ----plot3, fig.cap="Scores along a transcript containing a A to G conversion indicating the presence of Inosine.", fig.asp=1----
plotData(msi, "2", from = 10L, to = 45L, alias = alias) # showSequenceData = FALSE
## ----plot4, fig.cap="Scores along a transcript containing a A to G conversion indicating the presence of Inosine. This figure includes the detailed pileup sequence data.", fig.asp=1.2----
plotData(msi[1:2], "2", from = 10L, to = 45L, showSequenceData = TRUE, alias = alias)
## ----plot5, fig.cap="TPR vs. FPR plot.", fig.asp=1----------------------------
plotROC(msi, coord)
## -----------------------------------------------------------------------------
stats <- stats(msi)
stats
stats[["SampleSet1"]]
stats[["SampleSet1"]][["treated"]]
## ----plot6, echo=FALSE, fig.cap="Distribution of lengths for reads used in the analysis", fig.asp=1----
plotData <- lapply(stats,function(set){
ans <- lapply(lapply(lapply(set,"[[","used_distro"),"[[","chr1"),"[[","1")
names <- unique(unlist(lapply(ans,names), use.names = FALSE))
ans <- lapply(ans,function(a){
a[names[!(names %in% names(a))]] <- 0
a <- a/matrixStats::colMaxs(as.matrix(a))
a
})
ans <- reshape2::melt(data.frame(c(list(length = as.integer(names)),ans)),
id.vars = "length")
ans
})
plotData <- Reduce("rbind",Map(function(pd,group){pd$group <- group;pd},
plotData,names(plotData)))
ggplot2::ggplot(plotData) +
ggplot2::geom_bar(mapping = ggplot2::aes(x = length, y = value, fill = group),
stat = "identity",
position = "dodge")
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.