Nothing
#' @include RNAmodR.R
#' @include Modifier-class.R
#' @include ModifierSet-class.R
NULL
# documentation ----------------------------------------------------------------
#' @name ModInosine
#' @aliases Inosine ModifierInosine ICE-Seq
#'
#' @author Felix G.M. Ernst [aut]
#'
#' @title ModInosine
#'
#' @description
#' Inosine can be detected in RNA-Seq data by the conversion of A positions to
#' G. This conversion is detected by \code{ModInosine} and used to search for
#' Inosine positions. \code{dataType} is \code{"PileupSequenceData"}.
#'
#' Only samples labeled with the condition \code{treated} are used for this
#' analysis, since the A to G conversion is common feature among the reverse
#' transcriptases usually emploied. Let us know, if that is not the case, and
#' the class needs to be modified.
#'
#' Further information on \code{\link[=ModInosine-functions]{Functions}} of
#' \code{ModInosine}.
#'
#' @details
#' \code{ModInosine} score: the scores for reported Inosine positions are
#' between 0 and 1. They are calculated as the relative amount of called G bases
#' (\code{(G / N)}) and only saved for genomic A positions.
#'
#' @param x the input which can be of the different types depending on whether
#' a \code{ModRiboMethSeq} or a \code{ModSetRiboMethSeq} object is to be
#' constructed. For more information have a look at the documentation of
#' the \code{\link[RNAmodR:Modifier-class]{Modifier}} and
#' \code{\link[RNAmodR:ModifierSet-class]{ModifierSet}} classes.
#' @param annotation annotation data, which must match the information contained
#' in the BAM files. This is parameter is only required, if \code{x} is not a
#' \code{Modifier} object.
#' @param sequences sequences matching the target sequences the reads were
#' mapped onto. This must match the information contained in the BAM files. This
#' is parameter is only required, if \code{x} is not a \code{Modifier} object.
#' @param seqinfo An optional \code{\link[GenomeInfoDb:Seqinfo-class]{Seqinfo}}
#' argument or character vector, which can be coerced to one, to subset the
#' sequences to be analyzed on a per chromosome basis.
#' @param ... Optional arguments overwriting default values, which are
#' \itemize{
#' \item{minCoverage:} {The minimal coverage at the position as integer value
#' (default: \code{minCoverage = 10L}).}
#' \item{minReplicate:} {minimum number of replicates needed for the analysis
#' (default: \code{minReplicate = 1L}).}
#' \item{minScore:} {minimum score to identify Inosine positions de novo
#' (default: \code{minScore = 0.4}).}
#' }
#'
#' @return a \code{ModInosine} or \code{ModSetInosine} object
#'
#' @examples
#' # construction of ModInosine object
#' library(RNAmodR.Data)
#' library(rtracklayer)
#' annotation <- GFF3File(RNAmodR.Data.example.man.gff3())
#' sequences <- RNAmodR.Data.example.man.fasta()
#' files <- c(treated = RNAmodR.Data.example.wt.1())
#' mi <- ModInosine(files,annotation = annotation ,sequences = sequences)
#' # construction of ModSetInosine object
#' \dontrun{
#' files <- list("SampleSet1" = c(treated = RNAmodR.Data.example.wt.1(),
#' treated = RNAmodR.Data.example.wt.2(),
#' treated = RNAmodR.Data.example.wt.3()),
#' "SampleSet2" = c(treated = RNAmodR.Data.example.bud23.1(),
#' treated = RNAmodR.Data.example.bud23.2()),
#' "SampleSet3" = c(treated = RNAmodR.Data.example.trm8.1(),
#' treated = RNAmodR.Data.example.trm8.2()))
#' msi <- ModSetInosine(files, annotation = annotation, sequences = sequences)
#' }
NULL
#' @name ModInosine-internals
#' @aliases .dataTracks,ModInosine,GRanges,GRanges,XString-method
#'
#' @title ModInosine internal functions
#'
#' @description
#' These functions are not intended for general use, but are used for
#' additional package development.
#'
#' @param x,data,seqdata,sequence,args internally used arguments
NULL
#' @name ModInosine-functions
#'
#' @title Functions for ModInosine
#'
#' @description
#' All of the functions of \code{\link[RNAmodR:Modifier-class]{Modifier}} and
#' the \code{\link[RNAmodR:ModifierSet-class]{ModifierSet}} classes are
#' inherited by the \code{ModInosine} and \code{ModSetInosine} classes.
#'
#' Check below for the specifically implemented functions.
#'
#' @param x a \code{\link[RNAmodR:Modifier-class]{Modifier}} or a
#' \code{\link[RNAmodR:ModifierSet-class]{ModifierSet}} object. For more details
#' see also the man pages for the functions mentioned below.
#' @param value See \code{\link[RNAmodR:Modifier-functions]{settings}}
#' @param coord,name,from,to,type,window.size,... See
#' \code{\link{plotData}}
#'
#' @details
#' \code{ModInosine} specific arguments for \link{plotData}:
#' \itemize{
#' \item{\code{colour.bases} - }{a named character vector of \code{length = 4}
#' for the colours of the individual bases. The names are expected to be
#' \code{c("G","A","U","C")}}
#' }
#'
#' @return
#' \itemize{
#' \item{\code{settings}} {See \code{\link[=Modifier-functions]{settings}}.}
#' \item{\code{aggregate}} {See \code{\link{aggregate}}.}
#' \item{\code{modify}} {See \code{\link{modify}}.}
#' \item{\code{getDataTrack}} {a list of
#' \code{\link[Gviz:DataTrack-class]{DataTrack}} objects. See
#' \code{\link{plotDataByCoord}}.}
#' \item{\code{plotData}} {See \code{\link{plotDataByCoord}}.}
#' \item{\code{plotDataByCoord}} {See \code{\link{plotDataByCoord}}.}
#' }
#'
#' @examples
#' data(msi,package="RNAmodR")
#' mi <- msi[[1]]
#' settings(mi)
#' \dontrun{
#' aggregate(mi)
#' modify(mi)
#' }
#' getDataTrack(mi, "1", mainScore(mi))
NULL
# class ------------------------------------------------------------------------
#' @rdname ModInosine
#' @export
setClass("ModInosine",
contains = c("RNAModifier"),
prototype = list(mod = "I",
score = "score",
dataType = "PileupSequenceData"))
# constructor ------------------------------------------------------------------
# Create Modifier class from file character, fasta and gff file
#' @rdname ModInosine
#' @export
ModInosine <- function(x, annotation, sequences, seqinfo, ...){
Modifier("ModInosine", x = x, annotation = annotation, sequences = sequences,
seqinfo = seqinfo, ...)
}
# settings ---------------------------------------------------------------------
.ModInosine_settings <- data.frame(
variable = c("minScore"),
testFUN = c(".not_numeric_between_0_100"),
errorValue = c(TRUE),
errorMessage = c("'minScore' must be numeric with a value between 0 and 100."),
stringsAsFactors = FALSE)
.norm_ModInosine_settings <- function(input){
minScore <- 0.4
args <- .norm_settings(input, .ModInosine_settings, minScore)
args
}
#' @rdname ModInosine-functions
#' @export
setReplaceMethod(f = "settings",
signature = signature(x = "ModInosine"),
definition = function(x, value){
x <- callNextMethod()
value <- .norm_ModInosine_settings(value)
x@settings[names(value)] <- unname(value)
x
})
# functions --------------------------------------------------------------------
.calculate_inosine_score <- function(x, letters){
data <- unlist(x)
letters <- unlist(letters)
scores <-
data$means.treated.G / (data$means.treated.A + data$means.treated.T +
data$means.treated.C +data$means.treated.G)
scores[is.infinite(scores) | is.na(scores)] <- 0
scores[letters != "A"] <- 0
ans <- S4Vectors::DataFrame(value = scores)
relist(ans, x)
}
.aggregate_inosine <- function(x){
mod <- aggregate(sequenceData(x))
letters <- IRanges::CharacterList(strsplit(as.character(sequences(x)),""))
score <- .calculate_inosine_score(mod, letters)
ans <- cbind(S4Vectors::DataFrame(score = unlist(score)$value,
row.names = NULL))
ans <- relist(ans, mod)
rownames(ans) <- rownames(mod)
ans
}
#' @rdname ModInosine-functions
#' @export
setMethod(f = "aggregateData",
signature = signature(x = "ModInosine"),
definition =
function(x){
.aggregate_inosine(x)
}
)
.get_inosine_score <- function(data){
list(score = data$score)
}
.find_inosine <- function(x){
if(!hasAggregateData(x)){
stop("")
}
letters <- IRanges::CharacterList(strsplit(as.character(sequences(x)),""))
# get the aggregate data
mod <- getAggregateData(x)
coverage <- pileupToCoverage(sequenceData(x))
# get arguments
minCoverage <- settings(x,"minCoverage")
minReplicate <- settings(x,"minReplicate")
minScore <- settings(x,"minScore")
# construct logical vector for passing the coverage threshold
coverage <- rowSums(as.data.frame(unlist(coverage))) >= minCoverage
coverage <- relist(unname(coverage),IRanges::PartitioningByEnd(mod))
# find inosine positions by looking for A to G conversion at position with
# enough coverage
grl <- ranges(x)
modifications <- Map(
function(m,c,l,r){
m <- m[l == "A" &
m$score >= minScore &
c,,drop=FALSE] # coverage check
if(nrow(m) == 0L) return(NULL)
ans <- constructModRanges(r, m, modType = "I",
RNAmodR:::.get_inosine_score, "RNAmodR",
"RNAMOD")
ans
},
mod,
coverage,
letters,
grl)
f <- !vapply(modifications,
is.null,
logical(1))
modifications <- Map(
function(m,name){
m$Parent <- name
m
},
modifications[f],
names(grl)[f])
modifications <- GenomicRanges::GRangesList(modifications)
unname(unlist(modifications))
}
#' @rdname ModInosine-functions
#' @export
setMethod("findMod",
signature = c(x = "ModInosine"),
function(x){
.find_inosine(x)
}
)
# ModSetInosine ----------------------------------------------------------------
#' @rdname ModInosine
#' @export
setClass("ModSetInosine",
contains = "ModifierSet",
prototype = list(elementType = "ModInosine"))
#' @rdname ModInosine
#' @export
ModSetInosine <- function(x, annotation = NA, sequences = NA, seqinfo = NA,
...){
RNAmodR::ModifierSet("ModInosine", x = x, annotation = annotation,
sequences = sequences, seqinfo = seqinfo, ...)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.