R/mod_optimization.R

Defines functions mod_optimization

Documented in mod_optimization

################################################################################
#' model optimization for fitting exponential decay models to normalized data
#'
#' The mod_optimization function finds the estimates of model parameters by
#'   maximum likelihood, for a single gene on a specified list of models, and
#'   saves a tab delimited text file of the results named,'
#'   [geneID]_results.txt'.
#' The function does the following for each gene:
#' (1) it calculates log likelihood for each point in a 2 dimensional grid of
#'   evenly spaced alpha and beta values within the alpha and beta bounds
#'   specified using the null model (in which all treatment alphas are
#'   equivalent and all betas are equivalent).
#' (2) it calculates log likelihood for each point in a 1 dimensional range of
#'   evenly spaced alpha values within the alpha bounds using the single
#'   exponential null model (in which all treatment alphas are equivalent).
#' (3) For each of the grid points with the highest log likelihood from steps
#'   (1) and (2) 25 starting parameter value sets that are normally
#'   distributed around these points are generated.
#' (4) Parameter values are optimized for maximum likelihood using each of
#'   these 50 starting parameter sets using pre-compiled C++ functions loaded
#'  from dynamically linked libraries stored in the package on all models
#'  specified in the models argument.
#' (5) evaluates parameter estimates of all 50 optimizations based on the
#'   reported maximum liklihood upon convergence. Only parameter estimates
#'   that converged on the same and highest maximum likelihood are returned.
#' (6) returns the optimized parameter estimates, with model selection
#'   statistics.
#'
#' @param gene geneID from \code{data} to be modeled
#' @param data decay data data.frame with columns named 'geneID', 'treatment',
#'   't.decay', 'rep', 'value.'
#' @param models vector spceifying which models to run optimization on (e.g.,
#'   c('mod1', 'mod239'))
#' @param alpha_bounds vector of length 2 with lower and upper bounds for
#'   alpha
#' @param beta_bounds vector of length 2 with lower and upper bounds for beta
#' @param group grouping matrix for alphas or betas
#' @param mod data.frame specifying alpha and beta group pairs for each model
#' @param file_only logical; should output only be written to file (TRUE) or
#'   also return a data.frame of the results (FALSE)
#' @param path specify folder for output to be written
#'
#' @useDynLib general_dExp_4sse
#' @useDynLib general_Exp_4sse
#' @useDynLib general_dExp_3sse
#' @useDynLib general_Exp_3sse
#' @useDynLib general_dExp_2sse
#' @useDynLib general_Exp_2sse
#' @useDynLib general_dExp_1sse
#' @useDynLib general_Exp_1sse
#'
#' @export
#'
#' @return returns (if \code{file_only = FALSE}) and writes to \code{path} a
#'   data frame of model optimization results for \code{models} one row for
#'   each for \code{gene} using values for it found in \code{data}, the columns
#'   of the data frame are:
#' geneID, mod (model), model estimates [alpha_treatment1, ...,
#'   alpha_treatmentn, beta_treatment1, ..., beta_treatmentn, sigma2],
#'  logLik (maximum log likelihood), nPar (number of parameters in the model),
#'  nStarts (number of parameter starting value sets (of 50) that converged on
#'  a maximum likelihood peak), J (number of parameter starting value sets that
#'  converged on the highest - within 1e-4 - maximum likelihood of all
#'  parameter starting value sets), range.LL (range of maximum likelihoods
#'  values reached by algorithm convergence from all parameter starting value
#'  sets), nUnique.LL (number of unique maximum likelihoods values reached by
#'  algorithm convergence from all parameter starting value sets), C.alpha (sum
#'  of all coefficients of variation for each column of alpha estimates),
#'  C.beta (sum of all coefficients of variation for each column of beta
#'  estimates), C.tot (C.alpha+C.beta), AICc (calculated from the single
#'  highest maximum likelihood of all parameter starting value sets), AICc_est
#'  (calculated from the log likelihood value computed by using the mean of
#'  each parameter from all optimizations that converged on the highest
#'  maximum likelihood of all starting parameter value sets.)
#'
#' @examples
#'
#' mod_optimization(gene = 'Gene_BooFu',
#'                 data = data.frame(geneID=rep('Gene_BooFu',30),
#'                             treatment=c(rep('WT',15),rep('mut',15)),
#'                             t.decay=rep(c(0,7.5,15,30,60),6),
#'                             rep=rep(paste0('rep',c(rep(1,5),rep(2,5),rep(3,5))),2),
#'                             value= c(0.9173587, 0.4798672, 0.3327807, 0.1990708, 0.1656554,
#'                                      0.9407511, 0.7062988, 0.3450886, 0.3176824, 0.2749946,
#'                                      1.1026497, 0.6156978, 0.4563346, 0.2865779, 0.1680075,
#'                                      0.8679866, 0.6798788, 0.2683555, 0.5120951, 0.2593122,
#'                                      1.1348219, 0.8535835, 0.6423996, 0.5308946, 0.4592902,
#'                                      1.1104068, 0.5966838, 0.3949790, 0.3742632, 0.2613560)),
#'                 alpha_bounds = c(1e-4,0.75),
#'                 beta_bounds = c(1e-3,0.075),
#'                 models = 'mod1',
#'                 group = t(matrix(c(1,2,1,1,NA,NA),nrow=2,
#'                           dimnames=list(c('treat1','treat2'),c('mod1','mod2','mod3')))),
#'                 mod = as.data.frame(t(matrix(c(1,1,1,2,1,3,2,1,2,2,2,3),nrow=2,
#'                         dimnames=list(c('a','b'),paste0('mod',1:6))))),
#'                 file_only = FALSE,
#'                 path = paste0(tempdir(),"/modeling results"))
#'



mod_optimization <- function(gene,
                           data,
                           alpha_bounds,
                           beta_bounds,
                           models,
                           group,
                           mod,
                           file_only = TRUE,
                           path = "modeling_results") {
  if (!file.exists(path)) {
    dir.create(path)
  }

  genoSet <- 1:(length(unique(data$rep)) * length(unique(data$t.decay)))
  nTreat <- length(unique(data$treatment))
  nSet <- length(genoSet) * nTreat

  if (nTreat > 4) stop("mod_optimization can only handle up to 4 treatments.")

  gene <- as.character(gene)

  # pull out the data the specific gene data
  gdata <- data[data$geneID == as.character(gene),]
  t <- gdata$t.decay
  m <- gdata$value
  const <- constraint_fun_list_maker(mods = mod, groups = group)
  eps <- 1e-04

  #### Determine starting points. ####

  ### Define grid for evaluating model 240 while determining starting points.
  A <- seq(0, alpha_bounds[2], by = 0.001)
  ### Define grid for evaluating model 239 while determining starting points.
  a <- seq(alpha_bounds[1], alpha_bounds[2], by = 0.001)
  b <- seq(beta_bounds[1], beta_bounds[2], by = 0.001)

  ### Pick 25 points near the 'peak' of Model null double exponential model.  Find the
  ### SSE surface for the double exponential model...
  sse.nulldExp <- sapply(b, function(x) {
    sapply(
      a,
      FUN = sse_null_decaying_decay,
      b = x,
      m = m,
      t = t
    )
  })

  ### Find the location of the minimum.
  loc239 <-
    which(sse.nulldExp == min(sse.nulldExp), arr.ind = TRUE)

  ### Pick 25 points near the 'peak' of Model 240. Find the SSE surface for model
  ### 240...
  sse.nullExp <- sapply(A, FUN = sse_null_const_decay, m = m, t = t)
  ### Find the location of the minimum.
  loc240 <- which(sse.nullExp == min(sse.nullExp))

  ### Create the matrix of starting points. Pick the alpha values.
  aX0 <-
    matrix(c(
      stats::rnorm(25 * nTreat, mean = a[loc239[1, "row"]], sd = 0.01),
      stats::rnorm(25 * nTreat, mean = A[loc240], sd = 0.01)
    ), ncol = nTreat)
  ### Fix the alpha values outside of [1e-4,0.75]
  aX0 <- ifelse(aX0 < alpha_bounds[1], alpha_bounds[1], aX0)
  aX0 <- ifelse(aX0 > alpha_bounds[2], alpha_bounds[2], aX0)

  ### Pick the beta values.
  bX0 <-
    matrix(c(
      stats::rnorm(25 * nTreat, mean = b[loc239[1, "col"]], sd = 0.01),
      stats::runif(25 * nTreat, beta_bounds[1], beta_bounds[2])
    ), ncol = nTreat)
  ### Fix the beta values outside of [1e-3,0.075]
  bX0 <- ifelse(bX0 < beta_bounds[1], beta_bounds[1], bX0)
  bX0 <- ifelse(bX0 > beta_bounds[2], beta_bounds[2], bX0)

  ### Combine alpha and beta values into one matrix.
  X0 <- cbind(aX0, bX0)
  colnames(X0) <-
    c(paste0("alpha.int", 1:nTreat), paste0("beta.int", 1:nTreat))

  # set default parameters
  par.default <- c(rep(0, nTreat), rep(1, nTreat))
  names(par.default) <-
    c(paste0("a", 1:nTreat), paste0("b", 1:nTreat))


  # OPTIMIZATION OF THE DOUBLE EXPONENTIAL MODELS

  #### Create the objective function in R. ### This has to be done for each gene! ####
  obj.dExp <- TMB::MakeADFun(
    data = list(t = t, m = m),
    parameters = par.default,
    silent = TRUE,
    DLL = paste0("general_dExp_", nTreat, "sse")
  )

  results4ab <-
    sapply(models[models %in% rownames(mod)[mod$b != max(mod$b)]], function(x,
                                                                            eps,
                                                                            nSet,
                                                                            md,
                                                                            grp,
                                                                            alpha_bounds,
                                                                            beta_bounds) {
      fits <- apply(X0, 1, function(starts, y) {
        fit <-
          nloptr::slsqp(
            x0 = as.numeric(starts[1:ncol(X0)]),
            fn = obj.dExp$fn,
            gr = obj.dExp$gr,
            heq = const[[x]],
            lower = c(rep(alpha_bounds[1],
                          nTreat), rep(beta_bounds[1], nTreat)),
            upper = c(rep(alpha_bounds[2],
                          nTreat), rep(beta_bounds[2], nTreat))
          )
        unlist(c(
          geneID = gene,
          mod = x,
          as.numeric(fit$par),
          fit$value,
          fit$convergence
        ))
      }, y = x)

      fits <- data.frame(t(fits))
      fits[,-c(1:2)] <- sapply(fits[,-c(1, 2)], function(x)
        as.numeric(as.character(x)))
      fits <- as.data.frame(fits)
      colnames(fits) <- c("geneID", "mod", c(
        paste0("alpha_", as.character(unique(
          gdata$treatment
        ))),
        paste0("beta_", as.character(unique(
          gdata$treatment
        )))
      ), "SSE", "conv.code")

      fits <- fits[fits$conv.code == 4,]
      fits$sigma2 <- fit_var(sse = fits$SSE, n = nSet)
      fits$logLik <- log_lik(x = fits$SSE,
                           y = fits$sigma2,
                           n = nSet)

      max.LL <- max(fits$logLik)
      range.LL <- max.LL - min(fits$logLik)
      n.LL <- length(unique(round(fits$logLik, 4)))
      tmp <- fits[fits$logLik > (max.LL - eps),]
      C.alpha <- comb_cv(tmp[, grep("alpha", colnames(fits))])
      C.beta <- comb_cv(tmp[, grep("beta", colnames(fits))])
      C.tot <- C.alpha + C.beta
      par.est <- colMeans(tmp[, c(grep("alpha", colnames(fits)), grep("beta", colnames(fits)))])
      sigma2 <- mean(tmp$sigma2)
      nPar <- n_par(x, mod = md, group = grp)
      AICc <- aicc(max.LL, nPar, nSet)
      AICc_est <- aicc(log_lik(
        x = obj.dExp$fn(par.est),
        y = fit_var(sse = obj.dExp$fn(par.est),
                    n = nSet),
        n = nSet
      ),
      p = nPar,
      n = nSet)
      fit <- c(
        as.character(fits$geneID[1]),
        as.character(fits$mod[1]),
        par.est,
        sigma2,
        max.LL,
        nPar,
        nrow(fits),
        nrow(tmp),
        range.LL,
        n.LL,
        C.alpha,
        C.beta,
        C.tot,
        AICc,
        AICc_est
      )
      names(fit) <- c(
        "geneID",
        "mod",
        c(
          paste0("alpha_", as.character(unique(
            gdata$treatment
          ))),
          paste0("beta_", as.character(unique(
            gdata$treatment
          )))
        ),
        "sigma2",
        "logLik",
        "nPar",
        "nStarts",
        "J",
        "range.LL",
        "nUnique.LL",
        "C.alpha",
        "C.beta",
        "C.tot",
        "AICc",
        "AICc_est"
      )
      return(fit)
    }, eps = eps, nSet = nSet, grp = group, md = mod, alpha_bounds = alpha_bounds,
    beta_bounds = beta_bounds)
  results4ab <- as.data.frame(t(results4ab))
  results4ab[,-c(1, 2)] <- sapply(results4ab[,-c(1, 2)], function(x)
    as.numeric(as.character(x)))

  # OPTIMIZATION OF THE SINGLE EXPONENTIAL MODELS

  X0 <- aX0
  colnames(X0) <- c(paste0("alpha.int", 1:nTreat))

  obj.Exp <- TMB::MakeADFun(
    data = list(t = t, m = m),
    parameters = par.default[1:nTreat],
    silent = TRUE,
    DLL = paste0("general_Exp_", nTreat, "sse")
  )

  results4a <-
    sapply(models[models %in% rownames(mod)[mod$b == max(mod$b)]], function(x,
                                                                            eps, nSet, md, grp, alpha_bounds) {
      fits <- apply(X0, 1, function(starts, y) {
        fit <-
          nloptr::slsqp(
            x0 = as.numeric(starts[1:ncol(X0)]),
            fn = obj.Exp$fn,
            gr = obj.Exp$gr,
            heq = const[[x]],
            lower = rep(alpha_bounds[1], nTreat),
            upper = rep(alpha_bounds[2], nTreat)
          )
        unlist(c(
          geneID = gene,
          mod = x,
          as.numeric(fit$par),
          rep(0, nTreat),
          fit$value,
          fit$convergence
        ))
      }, y = x)

      fits <- data.frame(t(fits))
      fits[,-c(1:2)] <- sapply(fits[,-c(1, 2)], function(x)
        as.numeric(as.character(x)))
      fits <- as.data.frame(fits)
      colnames(fits) <- c("geneID", "mod", c(
        paste0("alpha_", as.character(unique(
          gdata$treatment
        ))),
        paste0("beta_", as.character(unique(
          gdata$treatment
        )))
      ), "SSE", "conv.code")

      fits <- fits[fits$conv.code == 4,]
      fits$sigma2 <- fit_var(sse = fits$SSE, n = nSet)
      fits$logLik <- log_lik(x = fits$SSE,
                           y = fits$sigma2,
                           n = nSet)

      max.LL <- max(fits$logLik)
      range.LL <- max.LL - min(fits$logLik)
      n.LL <- length(unique(round(fits$logLik, 4)))
      tmp <- fits[fits$logLik > (max.LL - eps),]
      C.alpha <- comb_cv(tmp[, grep("alpha", colnames(fits))])
      C.beta <- comb_cv(tmp[, grep("beta", colnames(fits))])
      C.tot <- C.alpha + C.beta
      par.est <- colMeans(tmp[, c(grep("alpha", colnames(fits)),
                                 grep("beta", colnames(fits)))])
      sigma2 <- mean(tmp$sigma2)
      nPar <- n_par(x, mod = md, group = grp)
      AICc <- aicc(max.LL, nPar, nSet)
      AICc_est <- aicc(log_lik(
        x = obj.Exp$fn(par.est[1:nTreat]),
        y = fit_var(sse = obj.Exp$fn(par.est[1:nTreat]),
                    n = nSet),
        n = nSet
      ),
      p = nPar,
      n = nSet)
      fit <- c(
        as.character(fits$geneID[1]),
        as.character(fits$mod[1]),
        par.est,
        sigma2,
        max.LL,
        nPar,
        nrow(fits),
        nrow(tmp),
        range.LL,
        n.LL,
        C.alpha,
        C.beta,
        C.tot,
        AICc,
        AICc_est
      )
      names(fit) <- c(
        "geneID",
        "mod",
        c(
          paste0("alpha_", as.character(unique(
            gdata$treatment
          ))),
          paste0("beta_", as.character(unique(
            gdata$treatment
          )))
        ),
        "sigma2",
        "logLik",
        "nPar",
        "nStarts",
        "J",
        "range.LL",
        "nUnique.LL",
        "C.alpha",
        "C.beta",
        "C.tot",
        "AICc",
        "AICc_est"
      )
      return(fit)
    }, eps = eps, nSet = nSet, grp = group, md = mod, alpha_bounds = alpha_bounds)
  results4a <- as.data.frame(t(results4a))
  results4a[,-c(1, 2)] <- sapply(results4a[,-c(1, 2)], function(x)
    as.numeric(as.character(x)))

  results <- rbind(results4a, results4ab)
  results <- results[order(as.numeric(gsub("mod", "", results$mod))),]

  utils::write.table(results, paste0(path, "/", gene, "_results.txt"), sep = "\t")
  cat(gene, "done     \n")  #; utils::timestamp()

  return(if (file_only)
    invisible(NULL)
    else
      results)

}

Try the RNAdecay package in your browser

Any scripts or data that you put into this service are public.

RNAdecay documentation built on Nov. 8, 2020, 5:52 p.m.