Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----warning=FALSE, message=FALSE---------------------------------------------
library(PrInCE)
data(scott)
## -----------------------------------------------------------------------------
dim(scott)
## -----------------------------------------------------------------------------
scott[1:10, 1:5]
## -----------------------------------------------------------------------------
data(gold_standard)
head(gold_standard)
## ----eval=FALSE---------------------------------------------------------------
# # set the seed to ensure reproducible output
# set.seed(0)
# ## not evaluated
# PrInCE(scott, gold_standard)
## ----eval=FALSE---------------------------------------------------------------
# # set the seed to ensure reproducible output
# set.seed(0)
# ## not evaluated
# build_gaussians(scott)
## -----------------------------------------------------------------------------
data(scott_gaussians)
str(scott_gaussians[[3]])
## -----------------------------------------------------------------------------
# set the seed to ensure reproducible output
set.seed(0)
# one-step analysis
interactions <- PrInCE(scott, gold_standard,
gaussians = scott_gaussians,
cv_folds = 3,
verbose = TRUE)
head(interactions, 50)
## -----------------------------------------------------------------------------
precision <- interactions$precision[1:10000]
plot(precision)
## -----------------------------------------------------------------------------
network <- threshold_precision(interactions, threshold = 0.5)
nrow(network)
## -----------------------------------------------------------------------------
data(scott)
# set the seed to ensure reproducible output
set.seed(0)
# fit Gaussians
gauss <- build_gaussians(scott[seq_len(500), ],
min_points = 10, min_consecutive = 5,
max_gaussians = 3, min_R_squared = 0.75,
max_iterations = 10)
# filter profiles that were not fit
scott <- scott[names(gauss), ]
## -----------------------------------------------------------------------------
feat <- calculate_features(scott, gauss, euclidean_distance = FALSE)
head(feat)
## ----eval=FALSE---------------------------------------------------------------
# ## not run
# # concatenate features from three different `scott` replicates
# feat1 <- calculate_features(scott1, gauss1)
# feat2 <- calculate_features(scott2, gauss2)
# feat3 <- calculate_features(scott3, gauss3)
# feat <- concatenate_features(list(feat1, feat2, feat3))
## -----------------------------------------------------------------------------
data(gold_standard)
reference <- adjacency_matrix_from_list(gold_standard)
# set the seed to ensure reproducible output
set.seed(0)
# predict interactions
ppi <- predict_interactions(feat, reference, classifier = "SVM",
models = 1, cv_folds = 3)
## -----------------------------------------------------------------------------
precision <- ppi$precision[seq_len(2e4)]
plot(precision)
## -----------------------------------------------------------------------------
net <- threshold_precision(ppi, threshold = 0.7)
nrow(net)
## -----------------------------------------------------------------------------
# analyze cleaned profiles
data(scott)
filtered = filter_profiles(scott)
chromatograms = clean_profiles(filtered)
## -----------------------------------------------------------------------------
# detect significantly co-eluting complexes
set.seed(0)
z_scores = detect_complexes(chromatograms, gold_standard)
## -----------------------------------------------------------------------------
# remove complexes that could not be analyzed
z_scores = na.omit(z_scores)
# how many could be tested?
length(z_scores)
# how many were significant at uncorrected, two-tailed p < 0.05?
sum(z_scores > 1.96)
# print the top complexes
head(sort(z_scores, decreasing = TRUE))
## -----------------------------------------------------------------------------
data("kristensen")
data("kristensen_gaussians")
dim(kristensen)
length(kristensen_gaussians)
## -----------------------------------------------------------------------------
kristensen <- kristensen[names(kristensen_gaussians), ]
kristensen <- kristensen[seq_len(500), ]
kristensen_gaussians <- kristensen_gaussians[rownames(kristensen)]
## -----------------------------------------------------------------------------
data("gold_standard")
head(gold_standard, 5)
## -----------------------------------------------------------------------------
# set seed for reproducibility
set.seed(0)
# predict interactions
interactions <- PrInCE(profiles = kristensen,
gold_standard = gold_standard,
gaussians = kristensen_gaussians,
models = 1,
cv_folds = 5)
## -----------------------------------------------------------------------------
network <- threshold_precision(interactions, 0.5)
nrow(network)
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.