Nothing
#' Takes molecular data from a PharmacoSet, and summarises them
#' into one entry per drug
#'
#' Given a PharmacoSet with molecular data, this function will summarize
#' the data into one profile per cell line, using the chosen summary.stat. Note
#' that this does not really make sense with perturbation type data, and will
#' combine experiments and controls when doing the summary if run on a
#' perturbation dataset.
#'
#' @examples
#' data(GDSCsmall)
#' GDSCsmall <- summarizeMolecularProfiles(GDSCsmall,
#' mDataType = "rna", cell.lines=cellNames(GDSCsmall),
#' summary.stat = 'median', fill.missing = TRUE, verbose=TRUE)
#' GDSCsmall
#'
#' @param object \code{PharmacoSet} The PharmacoSet to summarize
#' @param mDataType \code{character} which one of the molecular data types
#' to use in the analysis, out of all the molecular data types available for the pset
#' for example: rna, rnaseq, snp
#' @param cell.lines \code{character} The cell lines to be summarized.
#' If any cell.line has no data, missing values will be created
#' @param features \code{caracter} A vector of the feature names to include in the summary
#' @param summary.stat \code{character} which summary method to use if there are repeated
#' cell.lines? Choices are "mean", "median", "first", or "last"
#' In case molecular data type is mutation or fusion "and" and "or" choices are available
#' @param fill.missing \code{boolean} should the missing cell lines not in the
#' molecular data object be filled in with missing values?
#' @param summarize A flag which when set to FALSE (defaults to TRUE) disables summarizing and
#' returns the data unchanged as a ExpressionSet
#' @param verbose \code{boolean} should messages be printed
#' @param binarize.threshold \code{numeric} A value on which the molecular data is binarized.
#' If NA, no binarization is done.
#' @param binarize.direction \code{character} One of "less" or "greater", the direction of binarization on
#' binarize.threshold, if it is not NA.
#' @param removeTreated \code{logical} If treated/perturbation experiments are present, should they
#' be removed? Defaults to yes.
#'
#' @return \code{matrix} An updated PharmacoSet with the molecular data summarized
#' per cell line.
#'
#' @importMethodsFrom CoreGx summarizeMolecularProfiles
#' @importFrom utils setTxtProgressBar txtProgressBar
#' @importFrom SummarizedExperiment SummarizedExperiment rowData rowData<- colData colData<- assays assays<- assayNames assayNames<-
#' @importFrom Biobase AnnotatedDataFrame
#' @keywords internal
#' @export
setMethod('summarizeMolecularProfiles', signature(object='PharmacoSet'),
function(object, mDataType, cell.lines, features, summary.stat = c("mean", "median", "first", "last", "and", "or"),
fill.missing = TRUE, summarize = TRUE, verbose = TRUE, binarize.threshold = NA,
binarize.direction = c("less", "greater"), removeTreated=TRUE) {
mDataTypes <- mDataNames(object)
if (!(mDataType %in% mDataTypes)) {
stop (sprintf("Invalid mDataType, choose among: %s", paste(names(object@molecularProfiles), collapse=", ")))
}
if(summarize==FALSE){
return(object@molecularProfiles[[mDataType]])
}
if (missing(features)) {
features <- rownames(featureInfo(object, mDataType))
} else {
fix <- is.element(features, rownames(featureInfo(object, mDataType)))
if (verbose && !all(fix)) {
warning (sprintf("Only %i/%i features can be found", sum(fix), length(features)))
}
features <- features[fix]
}
summary.stat <- match.arg(summary.stat)
binarize.direction <- match.arg(binarize.direction)
if((!S4Vectors::metadata(object@molecularProfiles[[mDataType]])$annotation %in% c("mutation","fusion")) & (!summary.stat %in% c("mean", "median", "first", "last"))) {
stop ("Invalid summary.stat, choose among: mean, median, first, last" )
}
if((S4Vectors::metadata(object@molecularProfiles[[mDataType]])$annotation %in% c("mutation","fusion")) & (!summary.stat %in% c("and", "or"))) {
stop ("Invalid summary.stat, choose among: and, or" )
}
if (missing(cell.lines)) {
cell.lines <- cellNames(object)
}
if(object@datasetType %in% c("perturbation", "both") && removeTreated){
if(!"xptype" %in% colnames(phenoInfo(object, mDataType))) {
warning("The passed in molecular data had no column: xptype.
\rEither the mDataType does not include perturbations, or the PSet is malformed.
\rAssuming the former and continuing.")
} else {
keepCols <- phenoInfo(object, mDataType)$xptype %in% c("control", "untreated")
molecularProfilesSlot(object)[[mDataType]] <- molecularProfilesSlot(object)[[mDataType]][,keepCols]
}
}
##TODO:: have less confusing variable names
dd <- molecularProfiles(object, mDataType)
pp <- phenoInfo(object, mDataType)
if(S4Vectors::metadata(object@molecularProfiles[[mDataType]])$annotation == "mutation") {
tt <- dd
tt[which(!is.na(dd) & dd =="wt")] <- FALSE
tt[which(!is.na(dd) & dd !="wt")] <- TRUE
tt <- apply(tt, 2, as.logical)
dimnames(tt) <- dimnames(dd)
dd <- tt
}
if(S4Vectors::metadata(object@molecularProfiles[[mDataType]])$annotation == "fusion") {
tt <- dd
tt[which(!is.na(dd) & dd =="0")] <- FALSE
tt[which(!is.na(dd) & dd !="0")] <- TRUE
tt <- apply(tt, 2, as.logical)
dimnames(tt) <- dimnames(dd)
dd <- tt
}
if(S4Vectors::metadata(object@molecularProfiles[[mDataType]])$annotation %in% c("cnv", "rna", "rnaseq", "isoform")
&& !is.na(binarize.threshold)) {
tt <- dd
switch(binarize.direction, "less" = {
tt[which(!is.na(dd) & dd < binarize.threshold)] <- TRUE
tt[which(!is.na(dd) & dd >= binarize.threshold)] <- FALSE
}, "greater" = {
tt[which(!is.na(dd) & dd > binarize.threshold)] <- TRUE
tt[which(!is.na(dd) & dd <= binarize.threshold)] <- FALSE
})
tt <- apply(tt, 2, as.logical)
dimnames(tt) <- dimnames(dd)
dd <- tt
}
if (any(colnames(dd) != rownames(pp))) {
warning ("Samples in phenodata and expression matrices must be ordered the same way")
dd <- dd[ , rownames(pp), drop=FALSE]
}
if (!fill.missing) {
cell.lines <- intersect(cell.lines, unique(pp[!is.na(pp[ , "cellid"]), "cellid"]))
}
if (length(cell.lines) == 0) {
stop ("No cell lines in common")
}
## select profiles with no replicates
duplix <- unique(pp[!is.na(pp[ , "cellid"]) & duplicated(pp[ , "cellid"]), "cellid"])
ucell <- setdiff(cell.lines, duplix)
## keep the non ambiguous cases
dd2 <- dd[ , match(ucell, pp[ , "cellid"]), drop=FALSE]
pp2 <- pp[match(ucell, pp[ , "cellid"]), , drop=FALSE]
if (length(duplix) > 0) {
if (verbose) {
message(sprintf("Summarizing %s molecular data for:\t%s", mDataType, object@annotation$name))
total <- length(duplix)
# create progress bar
pb <- utils::txtProgressBar(min=0, max=total, style=3)
i <- 1
}
## replace factors by characters to allow for merging duplicated experiments
pp2 <- apply(pp2, 2, function (x) {
if (is.factor(x)) {
return (as.character(x))
} else {
return (x)
}
})
## there are some replicates to collapse
for (x in duplix) {
myx <- which(!is.na(pp[ , "cellid"]) & is.element(pp[ , "cellid"], x))
switch(summary.stat,
"mean" = {
ddt <- apply(dd[ , myx, drop=FALSE], 1, mean)
},
"median"={
ddt <- apply(dd[ , myx, drop=FALSE], 1, median)
},
"first"={
ddt <- dd[ , myx[1], drop=FALSE]
},
"last" = {
ddt <- dd[ , myx[length(myx)], drop=FALSE]
},
"and" = {
ddt <- apply(dd[ , myx, drop=FALSE], 1, function(x) do.call(`&`, as.list(x)))
},
"or" = {
ddt <- apply(dd[ , myx, drop=FALSE], 1, function(x) do.call(`|`, as.list(x)))
}
)
ppt <- apply(pp[myx, , drop=FALSE], 2, function (x) {
x <- paste(unique(as.character(x[!is.na(x)])), collapse="///")
return (x)
})
ppt[!is.na(ppt) & ppt == ""] <- NA
dd2 <- cbind(dd2, ddt)
pp2 <- rbind(pp2, ppt)
if (verbose){
utils::setTxtProgressBar(pb, i)
i <- i + 1
}
}
if (verbose) {
close(pb)
}
}
colnames(dd2) <- rownames(pp2) <- c(ucell, duplix)
## reorder cell lines
dd2 <- dd2[ , cell.lines, drop=FALSE]
pp2 <- pp2[cell.lines, , drop=FALSE]
pp2[ , "cellid"] <- cell.lines
res <- object@molecularProfiles[[mDataType]]
if(S4Vectors::metadata(object@molecularProfiles[[mDataType]])$annotation %in% c("mutation", "fusion")) {
tt <- dd2
tt[which(!is.na(dd2) & dd2)] <- "1"
tt[which(!is.na(dd2) & !dd2)] <- "0"
dd2 <- tt
}
res <- SummarizedExperiment::SummarizedExperiment(dd2)
pp2 <- S4Vectors::DataFrame(pp2, row.names=rownames(pp2))
pp2$tissueid <- cellInfo(object)[pp2$cellid, "tissueid"]
SummarizedExperiment::colData(res) <- pp2
SummarizedExperiment::rowData(res) <- featureInfo(object, mDataType)
##TODO:: Generalize this to multiple assay SummarizedExperiments!
if(!is.null(SummarizedExperiment::assay(res, 1))) {
SummarizedExperiment::assay(res, 2) <- matrix(rep(NA,
length(assay(res, 1))
),
nrow=nrow(assay(res, 1)),
ncol=ncol(assay(res, 1)),
dimnames=dimnames(assay(res, 1))
)
}
assayNames(res) <- assayNames(object@molecularProfiles[[mDataType]])
res <- res[features,]
S4Vectors::metadata(res) <- S4Vectors::metadata(object@molecularProfiles[[mDataType]])
return(res)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.