Nothing
library(PathNetData)
data(brain_regions)
data(A)
data(pathway)
# Test determining common path
test_determine.common.path <- function() {
# Setup variables
pathwayNames <- unique(pathway[,3])
pathwayNames_significant <- sort(pathwayNames)
tmp <- PathNet:::construct.DirectEvidence(brain_regions, 7)
DirectEvidence <- tmp$DirectEvidence
gene_ID <- tmp$gene_ID
Adjacency <- A
Adjacency <- Adjacency[rownames(Adjacency) %in% gene_ID,rownames(Adjacency) %in% gene_ID]
# Test function
common_path_results <- PathNet:::determine.common.path(pathwayNames_significant[1],
pathway, DirectEvidence,
Adjacency, gene_ID)
path_genes1 <- common_path_results$path_genes1
path_genes_common1 <- common_path_results$path_genes_common1
DirectEvidence_path_common1 <- common_path_results$DirectEvidence_path_common1
checkEquals(c(8647, 64241, 64240, 9429), path_genes1[1:4])
checkEquals(c(1080, 6833, 6891, 6890), path_genes_common1)
}
# Tests main contextual analysis operation WITHOUT enrichment analysis
test_contextual_no_enrichment <- function() {
evidence <- brain_regions[1:100,] # subset for speed
set.seed(123)
z <- PathNet(Enrichment_Analysis = FALSE,
Contextual_Analysis = TRUE,
DirectEvidence_info = evidence,
Adjacency = A,
pathway = pathway,
Column_DirectEvidence = 7,
n_perm = 5, threshold = 0.05)
checkEquals(NULL,z$enrichment_results)
checkEquals(NULL,z$enrichment.combined.evidence)
cp <- z$conn_p_value
checkEquals(c(0,1,1), cp[1,1:3], checkNames=FALSE)
po <- z$pathway_overlap
idx <- 5
checkEquals(1, po[idx,1])
checkEquals(3.291294e-12, po[idx,2], tolerance=0.00001)
checkEquals(0.0332455496, po[idx,3], tolerance=0.00001)
checkEquals(2.484184e-02, po[idx,4], tolerance=0.00001)
checkEquals(0, po[idx,5], tolerance=0.00001)
}
# Test construct sig pathways function
test_construct.significant.pathways_nosig <- function() {
# use_sig_pathways, pathwayNames, ea.results
pathwayNames <- unique(pathway[,3])
pathwayNames <- sort(pathwayNames)
# first argument FALSE means we just sort
sigpaths <- PathNet:::construct.significant.pathways(FALSE, pathwayNames, NULL)
checkEquals(130, length(pathwayNames))
checkEquals(130, length(sigpaths))
checkEquals('ABC transporters', as.character(sigpaths[1]))
checkEquals('Wnt signaling pathway', as.character(sigpaths[130]))
checkEquals(as.character(pathwayNames), as.character(sigpaths))
}
# Full test contextual analysis using signficant pathways
#test_contextual_with_sig_pathways <- function() {
# evidence <- brain_regions[1:5000,] # limit number of regions for speed
# set.seed(123)
#
# z <- PathNet(Enrichment_Analysis = TRUE,
# Contextual_Analysis = TRUE,
# DirectEvidence_info = evidence,
# Adjacency = A,
# pathway = pathway,
# Column_DirectEvidence = 7,
# n_perm = 10, threshold = 0.05,
# use_sig_pathways=TRUE)
#
# # Check p-values
# cp <- z$conn_p_value
# checkEquals(c(0.0, 0.0, 0.0, 0.2, 1.0), cp[2,1:5], checkNames=FALSE)
#
# # Pathway overlap
# po <- z$pathway_overlap
# idx <- 2
# checkEquals('Acute myeloid leukemia', rownames(po)[idx])
# checkEquals('Adherens junction', colnames(po)[1])
# checkEquals( 0.0004628949, po[idx,1], tolerance=0.00001)
# checkEquals( 0, po[idx,2])
# checkEquals( 1.284468e-08, po[idx,3], tolerance=0.00001)
# checkEquals( 3.291294e-12, po[idx,4], tolerance=0.00001)
# checkEquals( 1, po[idx,5])
#}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.