Nothing
## functions to calculate motif similarity metrics
#' Returned the aligned motif parts
#'
#' This function takes the offset of first motif relative to second and
#' chops off the end of both motifs that are not aligned. It returns a list
#' containing only the columns that align.
#'
#' @param m1 frequency matrix of first motif
#' @param m2 frequency matrix of second motif
#' @param offset a number of nucleotides by which the first motif is offsetted compared to the second
#' @return a list of column-trimmed motifs m1, m2
maxAligned = function(m1, m2, offset){
if(offset > 0){
# need to cut off beginning of m2
m2 = m2[,(offset+1):ncol(m2)]
} else if(offset < 0){
# net to cut off beginning of m1
m1 = m1[,(abs(offset)+1):ncol(m1)]
}
# make sure we keep matrix
if(is.vector(m1))
m1 = matrix(m1, ncol=1)
if(is.vector(m2))
m2 = matrix(m2, ncol=1)
# maximal number of columns that align
max.col = min(ncol(m1),ncol(m2))
m1 = m1[,1:max.col]
m2 = m2[,1:max.col]
# make sure we keep it in matrix
if(is.vector(m1))
m1 = matrix(m1, ncol=1)
if(is.vector(m2))
m2 = matrix(m2, ncol=1)
list(m1, m2)
}
#' Try all motif alignments and return max score
#'
#' This function tries all offsets of motif1 compared to motif2 and returns
#' the maximal (unnormalized) correlation score.
#'
#' The correlation score is essentially the sum of correlations of individual aligned
#' columns as described in Pietrokovski (1996).
#'
#' @param m1 frequency matrix of motif 1
#' @param m2 frequency matrix of motif 2
#' @param min.align minimal number of basepairs that need to align
#' @param exclude.zero if to exclude offset=0, useful for calculating self-similarity
#' @references Pietrokovski S. Searching databases of conserved sequence regions by aligning protein multiple-alignments. Nucleic Acids Res 1996;24:3836-3845.
#' @return single maximal score
tryAllMotifAlignments = function(m1, m2, min.align=2, exclude.zero=FALSE){
offset = (-ncol(m1)+min.align):(ncol(m2)-min.align)
if(exclude.zero)
offset = setdiff(offset, 0)
scores = rep(0, length(offset))
for(i in 1:length(offset)){
# get aligned matrices
aligned = maxAligned(m1, m2, offset[i])
# convert to probabilities
aligned.norm = lapply(aligned, function(x) divideRows(x, colSums(x)))
# scores for first alignment (sum of column-wise correlations)
scores[i] = sum(sapply(1:ncol(aligned.norm[[1]]), function(i) cor(aligned.norm[[1]][,i], aligned.norm[[2]][,i])))
}
max(scores)
}
#' Check the frequency matrix input parameter for motifSimilarity
#'
#' @param m either a PWM object or a matrix
#' @return corresponding PFM
.inputPFMfromMatrixOrPWM = function(m){
if(inherits(m, "PWM"))
return(m@pfm)
else if(is.matrix(m))
return(m)
else
stop("Input motif needs to be either of class PWM, or a frequency matrix")
}
#' Calculates similarity between two PFMs.
#'
#' This function calculates the normalized motif correlation as a measure of motif
#' frequency matrix similarity.
#'
#' This score is essentially a normalized version of the sum of column correlations
#' as proposed by Pietrokovski (1996). The sum is normalized by the average motif
#' length of m1 and m2, i.e. (ncol(m1)+ncol(m2))/2. Thus, for two idential motifs
#' this score is going to be 1. For unrelated motifs the score is going to be typically
#' around 0.
#'
#' Motifs need to aligned for this score to be calculated. The current implementation
#' tries all possible ungapped alignment with a minimal of two basepair matching, and
#' the maximal score over all alignments is returned.
#'
#' Motif 1 is aligned both to Motif 2 and its reverse complement. Thus, the motif
#' similarities are the same if the reverse complement of any of the two motifs
#' is given.
#'
#' @param m1 matrix with four rows representing the frequency matrix of first motif
#' @param m2 matrix with four rows representing the frequency matrix of second motif
#' @param trim bases with information content smaller than this value will be trimmed off both motif ends
#' @param self.sim if to calculate self similarity (i.e. without including offset=0 in alignment)
#' @references Pietrokovski S. Searching databases of conserved sequence regions by aligning protein multiple-alignments. Nucleic Acids Res 1996;24:3836-3845.
#' @export
#' @examples
#'
#' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){
#' data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background")
#'
#' # calculate the similarity of tin and vnd motifs (which are almost identical)
#' motifSimilarity(MotifDb.Dmel.PFM[["tin"]], MotifDb.Dmel.PFM[["vnd"]])
#'
#' # similarity of two unrelated motifs
#' motifSimilarity(MotifDb.Dmel.PFM[["tin"]], MotifDb.Dmel.PFM[["ttk"]])
#' }
motifSimilarity = function(m1, m2, trim=0.4, self.sim=FALSE){
# check input types
m1 = .inputPFMfromMatrixOrPWM(m1)
m2 = .inputPFMfromMatrixOrPWM(m2)
# remove any zero-variance columns
colSd1 = apply(m1, 2, sd)
colSd2 = apply(m2, 2, sd)
if(any(colSd1 == 0))
m1 = m1[,colSd1!=0]
if(any(colSd2 == 0))
m2 = m2[,colSd2!=0]
# trim bases with small motif content
ic1 = motifIC(m1, bycol=TRUE)
ic2 = motifIC(m2, bycol=TRUE)
# find which columns to keep
r1 = range(which(ic1 >= trim))
r2 = range(which(ic2 >= trim))
m1 = m1[,r1[1]:r1[2]]
m2 = m2[,r2[1]:r2[2]]
# get max score
if(self.sim){
# we don't want offset=0 because then the score would always be 1
score = tryAllMotifAlignments(m1, m2, exclude.zero=TRUE)
} else {
score = max(tryAllMotifAlignments(m1,m2),
tryAllMotifAlignments(m1,reverseComplement(m2)))
}
# normalize the max score by mean motif size
return(score / mean(c(ncol(m1), ncol(m2))))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.