Nothing
# inferring functionally related proteins with self training
net.infer.ST <- function(target, kernel, top = NULL, C = 1, nu = 0.2,
epsilon = 0.1, cache1 = 40, tol1 = 0.001, shrinking1 = TRUE,
cache2 = 40, tol2 = 0.001, shrinking2 = TRUE, thrConf = 0.9,
maxIts = 10, percFull = 1, verbose = FALSE)
{
node <- rownames(kernel)
n <- length(node)
if (length(target) <= 1)
stop("size of list is too small")
index <- match(target, node) != "NA"
new.target <- target[!is.na(index)]
n1 <- length(na.omit(index))
if (n - 2 * n1 <= 0)
stop("size of list is too large")
#### OCSVM
new.index <- !is.na(match(node, new.target))
train.kernel <- kernel[new.index, new.index]
model <- ksvm(train.kernel, type = "one-svc", kernel = "matrix",
C = C, nu = nu, epsilon = epsilon, cache = cache1, tol = tol1,
shrinking = shrinking1)
test.kernel <- as.kernelMatrix(kernel[, new.index][, SVindex(model),
drop = FALSE])
pred.decision <- predict(model, test.kernel, type = "decision")
y <- ifelse(new.index == TRUE, 1, "NA")
pred <- cbind(node, pred.decision, y)
sort.pred <- pred[order(as.numeric(pred[, 2])), ]
sort.pred2 <- subset(sort.pred, sort.pred[, 3] == "NA")
new.sort.pred2 <- sort.pred2[order(as.numeric(sort.pred2[,
2])), ]
target0 <- as.vector(new.sort.pred2[1:n1, 1])
new.index <- !is.na(match(node, target0))
y <- ifelse(new.index == TRUE, 0, y)
# self training
pred.decision <- self.train.kernel(kernel, factor(y, levels=c(0,1)), type = 'decision',
C = C, cache = cache2, tol = tol2, shrinking = shrinking2,
thrConf = thrConf, maxIts = maxIts,
percFull = percFull, verbose = verbose)
pred <- cbind(node, pred.decision, y)
colnames(pred)[2] <- "decision values"
sort.pred <- pred[order(as.numeric(pred[, 2]), decreasing = TRUE),
]
sort.pred2 <- subset(sort.pred, sort.pred[, 3] == "NA")
new.sort.pred2 <- sort.pred2[order(as.numeric(sort.pred2[,
2]), decreasing = TRUE), ]
if (is.null(top)) {
top = n - 2 * n1
}
if ((n - 2 * n1) < top) {
top = n - 2 * n1
}
pred.svm <- list()
pred.svm$list <- new.target
pred.svm$error <- error(model)
pred.svm$top <- as.vector(new.sort.pred2[1:top, 1])
pred.svm$score <- as.numeric(new.sort.pred2[1:top, 2])
pred.svm
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.