Nothing
context("PomaMultivariate")
test_that("PomaMultivariate works", {
data("st000284")
#### PCA
multivariate_pca_1 <- PomaMultivariate(st000284, method = "pca", components = 4,
center = FALSE, scale = FALSE, labels = TRUE)
multivariate_pca_2 <- PomaMultivariate(st000284, method = "pca", components = 5,
center = TRUE, scale = TRUE)
##
expect_equal(nrow(multivariate_pca_1$score_data), nrow(multivariate_pca_2$score_data))
expect_false(ncol(multivariate_pca_1$score_data) == ncol(multivariate_pca_2$score_data))
expect_equal(ncol(multivariate_pca_1$score_data), 4)
expect_equal(ncol(multivariate_pca_2$score_data), 5)
expect_equal(ncol(multivariate_pca_1$eigenvalues), ncol(multivariate_pca_2$eigenvalues))
expect_false(nrow(multivariate_pca_1$eigenvalues) == nrow(multivariate_pca_2$eigenvalues))
##
df_a <- layer_data(multivariate_pca_1$screeplot)
df_b <- layer_data(multivariate_pca_1$scoresplot)
df_c <- layer_data(multivariate_pca_2$screeplot)
df_d <- layer_data(multivariate_pca_2$scoresplot)
expect_false(length(df_a$y) == length(df_c$y))
expect_false(length(df_b$y) == length(df_d$y))
#### PLSDA
multivariate_plsda_1 <- PomaMultivariate(st000284, method = "plsda", components = 3,
center = TRUE, scale = TRUE,
validation = "Mfold", folds = 5, nrepeat = 10, labels = TRUE)
multivariate_plsda_2 <- PomaMultivariate(st000284, method = "plsda", components = 4,
center = TRUE, scale = TRUE,
validation = "loo", folds = 5, nrepeat = 1, vip = 1)
##
expect_equal(ncol(multivariate_plsda_1$errors_plsda), ncol(multivariate_plsda_2$errors_plsda))
expect_false(nrow(multivariate_plsda_1$errors_plsda) == nrow(multivariate_plsda_2$errors_plsda))
expect_false(ncol(multivariate_plsda_1$plsda_vip_table) == ncol(multivariate_plsda_2$plsda_vip_table))
expect_equal(nrow(multivariate_plsda_1$plsda_vip_table), nrow(multivariate_plsda_2$plsda_vip_table))
expect_false(ncol(multivariate_plsda_1$score_data) == ncol(multivariate_plsda_2$score_data))
##
df_a <- layer_data(multivariate_plsda_1$scoresplot)
df_b <- layer_data(multivariate_plsda_1$errors_plsda_plot)
df_c <- layer_data(multivariate_plsda_1$vip_plsda_plot)
df_d <- layer_data(multivariate_plsda_2$scoresplot)
df_e <- layer_data(multivariate_plsda_2$errors_plsda_plot)
df_f <- layer_data(multivariate_plsda_2$vip_plsda_plot)
expect_false(ncol(df_a) == ncol(df_d))
expect_equal(ncol(df_b$y), ncol(df_e$y))
expect_false(length(df_c$y) == length(df_f$y))
#### SPLSDA
multivariate_splsda_1 <- PomaMultivariate(st000284, method = "splsda", components = 3,
center = TRUE, scale = TRUE,
validation = "Mfold", folds = 5, nrepeat = 10,
num_features = 10, labels = TRUE)
multivariate_splsda_2 <- PomaMultivariate(st000284, method = "splsda", components = 4,
center = TRUE, scale = TRUE,
validation = "Mfold", folds = 5, nrepeat = 10,
num_features = 5)
##
expect_false(nrow(multivariate_splsda_1$selected_variables) ==
nrow(multivariate_splsda_2$selected_variables))
expect_false(nrow(multivariate_splsda_1$errors_splsda) ==
nrow(multivariate_splsda_2$errors_splsda))
expect_true(is.numeric(multivariate_splsda_1$ncomp))
expect_true(is.numeric(multivariate_splsda_2$ncomp))
df_a <- layer_data(multivariate_splsda_1$bal_error_rate)
df_b <- layer_data(multivariate_splsda_2$bal_error_rate)
df_c <- layer_data(multivariate_splsda_1$scoresplot)
df_d <- layer_data(multivariate_splsda_2$scoresplot)
expect_false(nrow(df_a) == nrow(df_b))
expect_false(length(df_c$y) == length(df_d$y))
## ERRORS AND WARNINGS
expect_error(PomaMultivariate(method = "splsda"))
expect_error(PomaMultivariate(iris, method = "splsda"))
expect_error(PomaMultivariate(st000284, method = "pc", components = 5))
expect_error(PomaMultivariate(st000284))
expect_error(PomaMultivariate(st000284, method = "plsda", validation = "Mfo"))
expect_warning(PomaMultivariate(st000284, method = "plsda"))
expect_error(PomaMultivariate(st000284, method = "pca", load_length = 2.1))
expect_error(PomaMultivariate(st000284, method = "pca", load_length = 0.9))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.