Description Usage Arguments Value Author(s) Examples
View source: R/PomaUnivariate.R
PomaUnivariate() allows users to perform different univariate statistical analysis on MS data.
1 2 3 4 5 6 7 8 | PomaUnivariate(
data,
covariates = FALSE,
method = "ttest",
paired = FALSE,
var_equal = FALSE,
adjust = "fdr"
)
|
data |
A MSnSet object. First |
covariates |
Logical. If it's set to |
method |
Univariate statistical method. Options are: "ttest", "anova", "mann" and "kruskal". |
paired |
Logical that indicates if the data is paired or not. |
var_equal |
Logical that indicates if the data variance is equal or not. |
adjust |
Multiple comparisons correction method. Options are: "fdr", "holm", "hochberg", "hommel", "bonferroni", "BH" and "BY". |
A data frame with results.
Pol Castellano-Escuder
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | data("st000336")
data("st000284")
# ttest
st000336 %>%
PomaImpute() %>%
PomaNorm() %>%
PomaOutliers() %>%
PomaUnivariate(method = "ttest")
# ANOVA
st000284 %>%
PomaImpute() %>%
PomaNorm() %>%
PomaOutliers() %>%
PomaUnivariate(method = "anova")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.