Nothing
inittime <- Sys.time()
cat(paste("\n Starting sample-prob", date(), "\n"))
p.value.threshold <- 1e-4
## a McFL version in long tests and also below
date()
test_that("Increasing cPDetect decreases time, Exp" , {
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
n <- 400 ## I once saw a failure in BioC, Windows
max.tries <- 4
for(tries in 1:max.tries) {
sa <- oncoSimulPop(n,
oi,
model = "Exp",
initSize = 1000,
keepEvery = -9,
detectionProb = c(p2 = NULL, n2 = NULL,
cPDetect = 0.05),
finalTime = NA,
onlyCancer = FALSE,
detectionDrivers = 99, mc.cores = 2)
sb <- oncoSimulPop(n,
oi,
model = "Exp",
initSize = 1000,
keepEvery = -9,
detectionProb = c(p2 = NULL, n2 = NULL,
cPDetect = 2),
finalTime = NA,
onlyCancer = FALSE,
detectionDrivers = 99, mc.cores = 2)
ta <- unlist(lapply(sa, function(x) x$FinalTime))
tb <- unlist(lapply(sb, function(x) x$FinalTime))
print(suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value))
T1 <- suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value < p.value.threshold)
if(T1) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1)
})
date()
## McFL in long
date()
test_that("Increasing p2 decreases time, Exp" , {
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
n <- 200
max.tries <- 4
for(tries in 1:max.tries) {
sa <- oncoSimulPop(n,
oi,
model = "Exp",
initSize = 3000,
keepEvery = NA,
detectionProb = c(p2 = .005, n2 = 5000, checkSizePEvery = 1, cPDetect = NULL),
finalTime = NA,
onlyCancer = FALSE,
detectionDrivers = 99, mc.cores = 2)
sb <- oncoSimulPop(n,
oi,
model = "Exp",
initSize = 3000,
keepEvery = NA,
detectionProb = c(p2 = .8, n2 = 5000, checkSizePEvery = 1, cPDetect = NULL),
finalTime = NA,
onlyCancer = FALSE,
detectionDrivers = 99, mc.cores = 2)
(ta <- unlist(lapply(sa, function(x) x$FinalTime)))
(tb <- unlist(lapply(sb, function(x) x$FinalTime)))
print(suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value))
T1 <- suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value < p.value.threshold)
if(T1) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1)
})
date()
date()
test_that("Increasing n2 increases time" , {
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
n <- 30 ## 70
max.tries <- 4
for(tries in 1:max.tries) {
sa <- oncoSimulPop(n,
oi,
model = "McFL",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .1, n2 = 4000, checkSizePEvery = 1,
PDBaseline = 1900, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA, mc.cores = 2)
sb <- oncoSimulPop(n,
oi,
model = "McFL",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .1, n2 = 2001, checkSizePEvery = 1,
PDBaseline = 1900, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA, mc.cores = 2)
(ta <- unlist(lapply(sa, function(x) x$FinalTime)))
(tb <- unlist(lapply(sb, function(x) x$FinalTime)))
print(suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value))
T1 <- suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value < p.value.threshold)
if(T1) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1)
})
date()
date()
test_that("Increasing checkSizePEvery increases time" , {
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
n <- 30
max.tries <- 4
for(tries in 1:max.tries) {
sa <- oncoSimulPop(n,
oi,
model = "McFL",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .1, n2 = 1500, checkSizePEvery = 20,
PDBaseline = 1100, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA, mc.cores = 2)
sb <- oncoSimulPop(n,
oi,
model = "McFL",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .1, n2 = 1500, checkSizePEvery = 1,
PDBaseline = 1100, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA, mc.cores = 2)
(ta <- unlist(lapply(sa, function(x) x$FinalTime)))
(tb <- unlist(lapply(sb, function(x) x$FinalTime)))
print(suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value))
T1 <- suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value < p.value.threshold)
if(T1) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1)
})
date()
date()
test_that("Increasing cPDetect decreases time, Exp" , {
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
n <- 50
max.tries <- 4
for(tries in 1:max.tries) {
sa <- oncoSimulPop(n,
oi,
model = "Exp",
initSize = 1000,
keepEvery = NA,
detectionProb = c(p2 = NA, n2 = NA, checkSizePEvery = 5,
PDBaseline = 500, cPDetect = 0.01), ## 1e-5),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA, mc.cores = 2)
sb <- oncoSimulPop(n,
oi,
model = "Exp",
initSize = 1000,
keepEvery = NA,
detectionProb = c(p2 = NA, n2 = NA, checkSizePEvery = 5,
PDBaseline = 500, cPDetect = 0.2), ## .01),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA, mc.cores = 2)
ta <- unlist(lapply(sa, function(x) x$FinalTime))
tb <- unlist(lapply(sb, function(x) x$FinalTime))
print(suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value))
T1 <- suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value < p.value.threshold)
if(T1) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1)
})
date()
date()
test_that("Increasing p2 decreases time, Exp" , {
gi <- rep(0.2, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
n <- 50
max.tries <- 4
for(tries in 1:max.tries) {
sa <- oncoSimulPop(n,
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .1, n2 = 8500, checkSizePEvery = 2,
PDBaseline = 1100, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA, mc.cores = 2)
sb <- oncoSimulPop(n,
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .8, n2 = 8500, checkSizePEvery = 2,
PDBaseline = 1100, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA, mc.cores = 2)
(ta <- unlist(lapply(sa, function(x) x$FinalTime)))
(tb <- unlist(lapply(sb, function(x) x$FinalTime)))
print(suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value))
T1 <- suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value < p.value.threshold)
if(T1) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1)
})
date()
date()
test_that("Increasing n2 increases time, Exp" , {
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
n <- 50
max.tries <- 4
for(tries in 1:max.tries) {
sa <- oncoSimulPop(n,
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .21, n2 = 9000, PDBaseline = 2100, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA, mc.cores = 2)
sb <- oncoSimulPop(n,
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .21, n2 = 2101, PDBaseline = 2100, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA, mc.cores = 2)
(ta <- unlist(lapply(sa, function(x) x$FinalTime)))
(tb <- unlist(lapply(sb, function(x) x$FinalTime)))
print(suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value))
T1 <- suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value < p.value.threshold)
if(T1) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1)
})
date()
date()
test_that("Increasing checkSizePEvery increases time, Exp" , {
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
n <- 70
max.tries <- 4
for(tries in 1:max.tries) {
sa <- oncoSimulPop(n,
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .1, n2 = 1500, checkSizePEvery = 50,
PDBaseline = 1100, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA, mc.cores = 2)
sb <- oncoSimulPop(n,
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .1, n2 = 1500, checkSizePEvery = 10,
PDBaseline = 1100, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA, mc.cores = 2)
(ta <- unlist(lapply(sa, function(x) x$FinalTime)))
(tb <- unlist(lapply(sb, function(x) x$FinalTime)))
print(suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value))
T1 <- suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value < p.value.threshold)
if(T1) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1)
})
date()
## And there is no need for fitness effects
date()
test_that("Increasing cPDetect decreases time" , {
gi <- rep(0.0, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
n <- 35 ## 75
max.tries <- 4
for(tries in 1:max.tries) {
sa <- oncoSimulPop(n,
oi,
model = "McFL",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = NA, n2 = NA, checkSizePEvery = 2,
PDBaseline = 1100, cPDetect = 0.1), ## 1e-4),
finalTime = NA, detectionSize = NA,
onlyCancer = FALSE,
detectionDrivers = NA, mc.cores = 2)
sb <- oncoSimulPop(n,
oi,
model = "McFL",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = NA, n2 = NA,checkSizePEvery = 2,
PDBaseline = 1100, cPDetect = 0.9), ## 1e-2),
finalTime = NA, detectionSize = NA,
onlyCancer = FALSE,
detectionDrivers = NA, mc.cores = 2)
ta <- unlist(lapply(sa, function(x) x$FinalTime))
tb <- unlist(lapply(sb, function(x) x$FinalTime))
print(suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value))
T1 <- suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value < p.value.threshold)
if(T1) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1)
})
date()
date()
test_that("Increasing p2 decreases time" , {
gi <- rep(0.0, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
n <- 40
max.tries <- 4
for(tries in 1:max.tries) {
sa <- oncoSimulPop(n,
oi,
model = "McFL",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .1, n2 = 3500,checkSizePEvery = 2,
PDBaseline = 1100, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = FALSE,
detectionDrivers = NA, mc.cores = 2)
sb <- oncoSimulPop(n,
oi,
model = "McFL",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .6, n2 = 3500,checkSizePEvery = 2,
PDBaseline = 1100, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = FALSE,
detectionDrivers = NA, mc.cores = 2)
(ta <- unlist(lapply(sa, function(x) x$FinalTime)))
(tb <- unlist(lapply(sb, function(x) x$FinalTime)))
print(suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value))
T1 <- suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value < p.value.threshold)
if(T1) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1)
})
date()
date()
test_that("Increasing n2 increases time" , {
gi <- rep(0.0, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
n <- 40
max.tries <- 4
for(tries in 1:max.tries) {
sa <- oncoSimulPop(n,
oi,
model = "McFL",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .15, n2 = 7000, checkSizePEvery = 1,
PDBaseline = 1100, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = FALSE,
detectionDrivers = NA, mc.cores = 2)
sb <- oncoSimulPop(n,
oi,
model = "McFL",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .15, n2 = 2001, checkSizePEvery = 1,
PDBaseline = 1100, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = FALSE,
detectionDrivers = NA, mc.cores = 2)
(ta <- unlist(lapply(sa, function(x) x$FinalTime)))
(tb <- unlist(lapply(sb, function(x) x$FinalTime)))
print(suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value))
T1 <- suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value < p.value.threshold)
if(T1) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1)
})
date()
date()
test_that("Increasing checkSizePEvery increases time" , {
gi <- rep(0.0, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
n <- 25
max.tries <- 4
for(tries in 1:max.tries) {
sa <- oncoSimulPop(n,
oi,
model = "McFL",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .1, n2 = 1500, checkSizePEvery = 10,
PDBaseline = 1100, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = FALSE,
detectionDrivers = NA, mc.cores = 2)
sb <- oncoSimulPop(n,
oi,
model = "McFL",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .1, n2 = 1500, checkSizePEvery = 1,
PDBaseline = 1100, cPDetect = NA),
finalTime = NA, detectionSize = NA,
onlyCancer = FALSE,
detectionDrivers = NA, mc.cores = 2)
(ta <- unlist(lapply(sa, function(x) x$FinalTime)))
(tb <- unlist(lapply(sb, function(x) x$FinalTime)))
print(suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value))
T1 <- suppressWarnings(wilcox.test(ta, tb, alternative = "greater")$p.value < p.value.threshold)
if(T1) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1)
})
date()
date()
test_that("Exercise the default option and other substitutions/defaults" , {
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = "default",
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(cPDetect = 0.001),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .9, n2 = 3000),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
extraTime = 2,
detectionProb = c(p2 = .9, n2 = 3000),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(p2 = .9, n2 = 3000),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
verbosity = 1,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(PDBaseline = 2002),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
verbosity = 1,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(checkSizePEvery = 31),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
verbosity = 1,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(PDBaseline = 2002, checkSizePEvery = 17),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
verbosity = 1,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(n2 = 4000, p2 = 0.85, checkSizePEvery = 17),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
verbosity = 1,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(cPDetect = 0.001, checkSizePEvery = 17),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
verbosity = 1,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(cPDetect = 0.001, PDBaseline = 2030),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
verbosity = 1,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000, verbosity = -3,
keepEvery = NA,
detectionProb = c(cPDetect = 0.001),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000, verbosity = -3,
keepEvery = NA,
detectionProb = c(p2 = .9, n2 = 3000),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000, verbosity = -3,
keepEvery = NA,
detectionProb = c(PDBaseline = 2002),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
expect_output(print(oncoSimulIndiv(
oi,
model = "Exp",
initSize = 2000, verbosity = -3,
keepEvery = NA,
detectionProb = c(checkSizePEvery = 31),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA)),
"Individual OncoSimul trajectory",
fixed = TRUE)
})
date()
date()
test_that("Fails as expected" , {
data(examplePosets)
p701 <- examplePosets[["p701"]]
expect_error(oncoSimulIndiv(p701,
detectionProb = "default"),
"detectionProb cannot be used in v.1 objects",
fixed = TRUE)
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
expect_error(oncoSimulIndiv(oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(cPDete = 0.1, n2 = 3000, p2 = 0.9),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA),
"Names of some components of detectionProb are not recognized",
fixed = TRUE)
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
expect_error(oncoSimulIndiv(oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(cPDetect = 0.1, n2 = 3000, p2 = 0.9),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA),
"Specify only cPDetect",
fixed = TRUE)
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
expect_error(oncoSimulIndiv(oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(cPDetect = 0.1, n2 = 3000),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA),
"Specify only cPDetect",
fixed = TRUE)
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
expect_error(oncoSimulIndiv(oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(n2 = 3000),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA),
"If you pass one of n2 or p2, you must also",
fixed = TRUE)
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
expect_error(oncoSimulIndiv(oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(n2 = 3000, p2 = 1.1),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA),
"p2 >= 1",
fixed = TRUE)
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
expect_error(oncoSimulIndiv(oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(n2 = 3000, p2 = -.3),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA),
"p2 <= 0",
fixed = TRUE)
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
expect_error(oncoSimulIndiv(oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(n2 = 3000, p2 = .3, PDBaseline = 5000),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA),
"n2 <= PDBaseline",
fixed = TRUE)
gi <- rep(0.1, 10)
names(gi) <- letters[1:10]
oi <- allFitnessEffects(noIntGenes = gi)
expect_error(oncoSimulIndiv(oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(n2 = 3000, p2 = .3, PDBaseline = -3),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA),
"PDBaseline <= 0",
fixed = TRUE)
expect_error(oncoSimulIndiv(oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = c(n2 = 3000, p2 = .3, PDBaseline = 0),
finalTime = NA, detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA),
"PDBaseline <= 0",
fixed = TRUE)
expect_error(oncoSimulIndiv(oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = NA,
finalTime = NA,
detectionSize = NA,
onlyCancer = TRUE,
detectionDrivers = NA),
"At least one stopping condition should be given",
fixed = TRUE)
expect_error(oncoSimulIndiv(oi,
model = "Exp",
initSize = 2000,
keepEvery = NA,
detectionProb = NA,
finalTime = NA,
detectionSize = NA,
onlyCancer = FALSE,
detectionDrivers = NA),
"At least one stopping condition should be given",
fixed = TRUE)
})
date()
## gi2 <- rep(0, 5)
## names(gi2) <- letters[1:5]
## oi2 <- allFitnessEffects(noIntGenes = gi2)
## ## nicely exponential, as expected
## s5 <- oncoSimulPop(100,
## oi2,
## model = "McFL",
## initSize = 1000,
## detectionSize = 4800,
## finalTime = NA, detectionSize = NA,
## keepEvery = -9,
## p2 = .1,
## checkSizePEvery = 2,
## verbosity = 0,
## PDBaseline = 1000,
## onlyCancer = TRUE,
## detectionDrivers = NA)
## s5
## hist(unlist(lapply(s5, function(x) x$FinalTime)))
cat(paste("\n Ending sample-prob tests", date(), "\n"))
cat(paste(" Took ", round(difftime(Sys.time(), inittime, units = "secs"), 2), "\n\n\n"))
rm(inittime)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.