Nothing
inittime <- Sys.time()
## Repeat tests in test.mutator, using oncoSimulSample.
## This is a concession to extreme paranoia.
cat(paste("\n Starting test.mutator-oncoSimulSample.R test at", date(), "\n"))
## RNGkind("L'Ecuyer-CMRG") ## for the mclapplies
## require(car) ## for linearHypothesis, below. In the namespace
enom <- function(name, mu, ni = no, pp = pops) {
## expected without a given name for init
ii <- which(names(mu) == name)
out <- ni * pp * mu[-ii]
out[order(names(out))]
}
pnom <- function(name, mu, ni = no, pp = pops) {
ee <- enom(name, mu, ni, pp)
ee/sum(ee)
}
snomSampl <- function(name, out) {
## observed without the init
cs <- colSums(out$popSample)
ii <- which(names(cs) == name)
cs <- cs[-ii]
cs[order(names(cs))]
}
smSampl <- function(name, out) {
## totals for a given gene
cs <- colSums(out$popSample)
ii <- which(names(cs) == name)
cs[ii]
}
totalindSampl <- function(out) {
## total num indivs
sum(out$popSummary$TotalPopSize)
}
medianNClonesOSS <- function(x) {
median(x$popSummary[, "NumClones"])
}
NClonesOSS <- function(x) {
x$popSummary[, "NumClones"]
}
## ugly hack. Of course, not really mutations per clone. But the closest iwth oncoSimulSample and sampling whole pop.
mutsPerCloneOSS <- function(out) {
rowSums(out$popSample)
}
p.value.threshold <- 0.005
## These next two tests are probably the strongest (provided we accept
## using the initMutant) as we compare observed with expected and the
## estimated effect of mutator
## Do it with pops small here, for speed, and then with many more in long.
## But we can still fail them just by chance. This is bad. Could use a
## loop and catch it and repeat.
date()
test_that("McFL: Mutator increases by given factor with per-gene-mut rates: major axis and chi-sq test", {
## Two cases: mutator and no mutator, with variable mutation rates.
## rates such that rates of no mutator = rates of mutator * mutator.
## Why not compare mutlitplication factor keeping mutation rates
## constant? Because specially with mutator and large diffs in mut
## rates, with oncoSimulSample you undersample variation with
## wholePop, etc.
## Setings similar to oss11 in per-gene-mutation-rates but with the mutator
max.tries <- 4
for(tries in 1:max.tries) {
cat("\n MCFL: AEu8: a runif is", runif(1), "\n")
pops <- 200
ft <- 5e-3
lni <- 7
no <- 5e5
ni <- c(0, 0, 0, rep(0, lni))
## scramble around names
names(ni) <- c("hereisoneagene",
"oreoisasabgene",
"nnhsisthecgene",
replicate(lni,
paste(sample(letters, 12), collapse = "")))
ni <- ni[order(names(ni))]
fe <- allFitnessEffects(noIntGenes = ni)
mutator1 <- rep(1, lni + 3)
pg1 <- seq(from = 1e-9, to = 1e-6, length.out = lni + 3) ## max should not be
## huge here as mutator
## is 34. Can get beyond
## 1
names(mutator1) <- sample(names(ni))
names(pg1) <- sample(names(ni))
mutator1["oreoisasabgene"] <- 100
m1 <- allMutatorEffects(noIntGenes = mutator1)
## pg1["hereisoneagene"] <- 1e-4 ## if this gets huge, then you are
## ## undersampling and the chi-square will
## ## fail. But then, we probably are
## ## running into numerical issues: 3
## ## orders of magnitude differences.
m1.pg1.b <- oncoSimulSample(pops,
fe, detectionProb = NA,
mu = pg1,
muEF = m1,
finalTime = ft,
mutationPropGrowth = FALSE,
initSize = no,
initMutant ="oreoisasabgene",
model = "McFL",
sampleEvery = 0.01, thresholdWhole = 1e-20,
detectionSize = 1e9,
detectionDrivers = 9999,
onlyCancer = FALSE, seed = NULL)
## m1.pg1.b$popSummary[, c(1:3, 8:9)]
## summary(m1.pg1.b$popSummary[, "NumClones"])
## Recall that init-mutant tests check always present of initMutant
## against a thresholWhole of 1. Here it is slightly different.
expect_true(smSampl("oreoisasabgene", m1.pg1.b) == pops)
## catch a pattern that would make the previous trivially true
expect_false(sum(m1.pg1.b$popSample) == pops * (lni + 3))
## next two, to compare with oss1a
## sort(enom("oreoisasabgene", pg1, no, pops))
## sort(snomSampl("oreoisasabgene", m1.pg1.b))
## Compare with the expected for this scenario
p.fail <- 1e-3
T1 <- (chisq.test(snomSampl("oreoisasabgene", m1.pg1.b),
p = pnom("oreoisasabgene", pg1, no, pops))$p.value > p.fail)
pg2 <- seq(from = 1e-7, to = 1e-4, length.out = lni + 3)
names(pg2) <- names(pg1)
m1.pg2.b <- oncoSimulSample(pops,
fe, detectionProb = NA,
mu = pg2,
finalTime = ft,
mutationPropGrowth = FALSE,
initSize = no,
initMutant ="oreoisasabgene",
model = "McFL",
sampleEvery = 0.01, thresholdWhole = 1e-20,
detectionSize = 1e9,
detectionDrivers = 9999,
onlyCancer = FALSE, seed = NULL)
## m1.pg2.b$popSummary[, c(1:3, 8:9)]
## summary(m1.pg2.b$popSummary[, "NumClones"])
## Recall that init-mutant tests check always present of initMutant
## against a thresholWhole of 1. Here it is slightly different.
expect_true(smSampl("oreoisasabgene", m1.pg2.b) == pops)
## catch a pattern that would make the previous trivially true
expect_false(sum(m1.pg2.b$popSample) == pops * (lni + 3))
## next two, to compare with oss1a
## sort(enom("oreoisasabgene", pg2, no, pops))
## sort(snomSampl("oreoisasabgene", m1.pg2.b))
p.fail <- 1e-3
T3 <- (chisq.test(snomSampl("oreoisasabgene", m1.pg2.b),
p = pnom("oreoisasabgene", pg2, no, pops))$p.value > p.fail)
## Compare mutator with no mutator
T4 <- (chisq.test(snomSampl("oreoisasabgene", m1.pg1.b),
snomSampl("oreoisasabgene", m1.pg2.b))$p.value > p.fail)
y <- sqrt(snomSampl("oreoisasabgene", m1.pg1.b))
x <- sqrt(snomSampl("oreoisasabgene", m1.pg2.b))
mma <- smatr::ma(y ~ x, slope.test = 1, elev.test = 0) ## From smatr package, for major axis
## intercept not different from 0
T5 <- (mma$elevtest[[1]]$p > p.fail)
T6 <- (mma$slopetest[[1]]$p > p.fail)
## We could use a lm and do a simultaneous test on both slope and
## intercept as. But this is really asking for major axis regression
## lm1 <- lm(snomSampl("oreoisasabgene", m1.pg1.b) ~
## snomSampl("oreoisasabgene", m1.pg2.b))
## ## test intercept is 0, slope is 1. Not technically fully correct, as
## ## X variable has noise. We should do major axis or similar and these
## ## are counts.
## expect_true(linearHypothesis(lm1, diag(2), c(0, 1))[["Pr(>F)"]][2] >
## p.fail)
if( T1 && T3 && T4 && T5 && T6) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1 && T3 && T4 && T5 && T6)
})
date()
date()
test_that("MCFL Relative ordering of number of clones with init mutant of mutator effects", {
max.tries <- 4
for(tries in 1:max.tries) {
T1 <- T2 <- T3 <- T4 <- T5 <- T6 <- T7 <- T8 <- TRUE
## Here we stop on popSize after short model. All have same small s.
cat("\n mcx2bc: a runif is", runif(1), "\n")
pops <- 50
ni <- rep(0.01, 50)
names(ni) <- c("a", "b", "c", "d", paste0("n", 1:46))
fe <- allFitnessEffects(noIntGenes = ni)
fm6 <- allMutatorEffects(noIntGenes = c("a" = .05,
"b" = 1,
"c" = 10,
"d" = 50))
nca <- oncoSimulSample(pops, fe, detectionProb = NA, muEF = fm6, finalTime =250,
mutationPropGrowth = FALSE,
initSize = 1e4,
initMutant = "a", detectionSize = 10200,
sampleEvery = 0.01, thresholdWhole = 1e-20,
onlyCancer = FALSE, model = "McFL")
ncb <- oncoSimulSample(pops, fe, detectionProb = NA, muEF = fm6, finalTime =250,
mutationPropGrowth = FALSE,
initSize = 1e4,
initMutant = "b", detectionSize = 10200,
sampleEvery = 0.01, thresholdWhole = 1e-20,
onlyCancer = FALSE, model = "McFL")
ncc <- oncoSimulSample(pops, fe, detectionProb = NA, muEF = fm6, finalTime =250,
mutationPropGrowth = FALSE,
initSize = 1e4,
initMutant = "c",detectionSize = 10200,
sampleEvery = 0.01, thresholdWhole = 1e-20,
onlyCancer = FALSE, model = "McFL")
ncd <- oncoSimulSample(pops, fe, detectionProb = NA, muEF = fm6, finalTime =250,
mutationPropGrowth = FALSE,
initSize = 1e4,
initMutant = "d",detectionSize = 10200,
sampleEvery = 0.01, thresholdWhole = 1e-20,
onlyCancer = FALSE, model = "McFL")
T4 <- ( wilcox.test(nca$popSummary[, "NumClones"],
ncb$popSummary[, "NumClones"],
alternative = "less")$p.value < p.value.threshold)
T5 <- (wilcox.test(ncb$popSummary[, "NumClones"],
ncc$popSummary[, "NumClones"],
alternative = "less")$p.value < p.value.threshold)
T6 <- ( wilcox.test(ncc$popSummary[, "NumClones"],
ncd$popSummary[, "NumClones"],
alternative = "less")$p.value < p.value.threshold)
nca$popSummary[, c(1:3, 8:9)]
ncb$popSummary[, c(1:3, 8:9)]
ncc$popSummary[, c(1:3, 8:9)]
ncd$popSummary[, c(1:3, 8:9)]
T1 <- (t.test(rowSums(nca$popSample), rowSums(ncb$popSample),
alternative = "less")$p.value < p.value.threshold)
T2 <- (t.test(rowSums(ncb$popSample), rowSums(ncc$popSample),
alternative = "less")$p.value < p.value.threshold)
T3 <- (t.test(rowSums(ncc$popSample), rowSums(ncd$popSample),
alternative = "less")$p.value < p.value.threshold)
if(T1 && T2 && T3 && T4 && T5 && T6 && T7 && T8) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1 && T2 && T3 && T4 && T5 && T6 && T7 && T8)
})
date()
date()
test_that("Relative ordering of number of clones with mut prop growth and init and scrambled names", {
max.tries <- 4
for(tries in 1:max.tries) {
T1 <- T2 <- T3 <- T4 <- T5 <- T6 <- T7 <- T8 <- TRUE
## Stopping on time; s > 0 , but all have same growth rate.
cat("\n x2ef: a runif is", runif(1), "\n")
pops <- 10
ft <- 1
lni <- 200
no <- 5e3
ni <- c(5, 0, rep(0, lni))
## scramble around names
names(ni) <- c("thisistheagene",
"thisisthebgene",
replicate(lni,
paste(sample(letters, 12), collapse = "")))
ni <- ni[order(names(ni))]
fe <- allFitnessEffects(noIntGenes = ni)
fm1 <- allMutatorEffects(noIntGenes = c("thisistheagene" = 5))
mpg <- oncoSimulSample(pops, fe, detectionProb = NA, muEF = fm1,
finalTime = ft,
mutationPropGrowth = TRUE,
initSize = no,
sampleEvery = 0.01, thresholdWhole = 1e-20,
initMutant = "thisistheagene",
detectionSize = 1e9,
detectionDrivers = 9999, seed = NULL,
onlyCancer = FALSE)
mnpg <- oncoSimulSample(pops, fe, detectionProb = NA, muEF = fm1,
finalTime = ft,
mutationPropGrowth = FALSE,
initSize = no,
sampleEvery = 0.01, thresholdWhole = 1e-20,
initMutant = "thisistheagene",
detectionSize = 1e9,
detectionDrivers = 9999, seed = NULL,
onlyCancer = FALSE)
pg <- oncoSimulSample(pops, fe, detectionProb = NA,
finalTime = ft,
mutationPropGrowth = TRUE,
initSize = no,
sampleEvery = 0.01, thresholdWhole = 1e-20,
initMutant = "thisistheagene",
detectionSize = 1e9,
detectionDrivers = 9999, seed = NULL,
onlyCancer = FALSE)
npg <- oncoSimulSample(pops, fe, detectionProb = NA,
finalTime = ft,
mutationPropGrowth = FALSE,
initSize = no,
sampleEvery = 0.01, thresholdWhole = 1e-20,
initMutant = "thisistheagene",
detectionSize = 1e9,
detectionDrivers = 9999, seed = NULL,
onlyCancer = FALSE)
## These are the real tests
T1 <- ( wilcox.test(mpg$popSummary[, "NumClones"], mnpg$popSummary[, "NumClones"],
alternative = "greater")$p.value < p.value.threshold)
T2 <- (wilcox.test(mpg$popSummary[, "NumClones"], pg$popSummary[, "NumClones"],
alternative = "greater")$p.value < p.value.threshold)
T3 <- (wilcox.test(mnpg$popSummary[, "NumClones"], npg$popSummary[, "NumClones"],
alternative = "greater")$p.value < p.value.threshold)
T4 <- (wilcox.test(pg$popSummary[, "NumClones"], npg$popSummary[, "NumClones"],
alternative = "greater")$p.value < p.value.threshold)
T5 <- (t.test(rowSums(mpg$popSample),rowSums(mnpg$popSample),
alternative = "greater")$p.value < p.value.threshold)
T6 <- (t.test(rowSums(mpg$popSample),rowSums(pg$popSample),
alternative = "greater")$p.value < p.value.threshold)
T7 <- (t.test(rowSums(mnpg$popSample),rowSums(npg$popSample),
alternative = "greater")$p.value < p.value.threshold)
T8 <- (t.test(rowSums(pg$popSample),rowSums(npg$popSample),
alternative = "greater")$p.value < p.value.threshold)
## mpg$popSummary[, c(1:3, 8:9)]
## mnpg$popSummary[, c(1:3, 8:9)]
## pg$popSummary[, c(1:3, 8:9)]
## npg$popSummary[, c(1:3, 8:9)]
if(T1 && T2 && T3 && T4 && T5 && T6 && T7 && T8) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1 && T2 && T3 && T4 && T5 && T6 && T7 && T8)
})
date()
date()
test_that("McFL: Relative ordering of number of clones with mut prop growth and init and scrambled names", {
max.tries <- 4
for(tries in 1:max.tries) {
T1 <- T2 <- T3 <- T4 <- T5 <- T6 <- T7 <- T8 <- TRUE
## Stopping on time; s > 0 but all same growth rate.
cat("\n x2gh: a runif is", runif(1), "\n")
pops <- 15
ft <- 1
lni <- 200
no <- 1e3
ni <- c(5, 0, rep(0, lni))
## scramble around names
names(ni) <- c("thisistheagene",
"thisisthebgene",
replicate(lni,
paste(sample(letters, 12), collapse = "")))
ni <- ni[order(names(ni))]
fe <- allFitnessEffects(noIntGenes = ni)
fm1 <- allMutatorEffects(noIntGenes = c("thisistheagene" = 5))
mpg <- oncoSimulSample(pops, fe, detectionProb = NA, muEF = fm1,
finalTime = ft,
mutationPropGrowth = TRUE,
initSize = no, model = "McFL",
initMutant = "thisistheagene",
sampleEvery = 0.01, thresholdWhole = 1e-20,
detectionSize = 1e9,
detectionDrivers = 9999, seed = NULL,
onlyCancer = FALSE)
mnpg <- oncoSimulSample(pops, fe, detectionProb = NA, muEF = fm1,
finalTime = ft,
mutationPropGrowth = FALSE,
initSize = no, model = "McFL",
initMutant = "thisistheagene",
sampleEvery = 0.01, thresholdWhole = 1e-20,
detectionSize = 1e9,
detectionDrivers = 9999, seed = NULL,
onlyCancer = FALSE)
pg <- oncoSimulSample(pops, fe, detectionProb = NA,
finalTime = ft,
mutationPropGrowth = TRUE,
initSize = no, model = "McFL",
initMutant = "thisistheagene",
sampleEvery = 0.01, thresholdWhole = 1e-20,
detectionSize = 1e9,
detectionDrivers = 9999, seed = NULL,
onlyCancer = FALSE)
npg <- oncoSimulSample(pops, fe, detectionProb = NA,
finalTime = ft,
mutationPropGrowth = FALSE,
initSize = no, model = "McFL",
initMutant = "thisistheagene",
sampleEvery = 0.01, thresholdWhole = 1e-20,
detectionSize = 1e9,
detectionDrivers = 9999, seed = NULL,
onlyCancer = FALSE)
## These are the real tests
T1 <- ( wilcox.test(mpg$popSummary[, "NumClones"], mnpg$popSummary[, "NumClones"],
alternative = "greater")$p.value < p.value.threshold)
T2 <- (wilcox.test(mpg$popSummary[, "NumClones"], pg$popSummary[, "NumClones"],
alternative = "greater")$p.value < p.value.threshold)
T3 <- ( wilcox.test(mnpg$popSummary[, "NumClones"], npg$popSummary[, "NumClones"],
alternative = "greater")$p.value < p.value.threshold)
T4 <- ( wilcox.test(pg$popSummary[, "NumClones"], npg$popSummary[, "NumClones"],
alternative = "greater")$p.value < p.value.threshold)
T5 <- (t.test(rowSums(mpg$popSample),rowSums(mnpg$popSample),
alternative = "greater")$p.value < p.value.threshold)
T6 <- (t.test(rowSums(mpg$popSample),rowSums(pg$popSample),
alternative = "greater")$p.value < p.value.threshold)
T7 <- (t.test(rowSums(mnpg$popSample),rowSums(npg$popSample),
alternative = "greater")$p.value < p.value.threshold)
T8 <- (t.test(rowSums(pg$popSample),rowSums(npg$popSample),
alternative = "greater")$p.value < p.value.threshold)
if(T1 && T2 && T3 && T4 && T5 && T6 && T7 && T8) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1 && T2 && T3 && T4 && T5 && T6 && T7 && T8)
})
date()
##### Comparisons against expected freqs, using a chi-square
## If any mu is very large or any lni is very large, it can fail unless
## pops is very large. And having a large mutator effect is like having a
## very large mu. We want to use very small finalTime: It is birth and
## rate that compound processes and of course we have non-independent
## sampling (overdispersion) which can make chisq a bad idea.
## Thus, we use a tiny final time so we are basically getting just
## mutation events. We need to use a large number of pops to try to avoid
## empty cells with low mutation frequencies.
## We will play with the mutator effects. Note also that here mutator is
## specified passing a vector of same size as genome. It would be faster
## to use just the name of mutator gene.
date()
test_that("McFL: Same mu vector, different mutator; diffs in number muts, tiny t", {
max.tries <- 4
for(tries in 1:max.tries) {
T1 <- T2 <- T3 <- T4 <- T5 <- T6 <- T7 <- T8 <- TRUE
## Here, there is no reproduction or death. Just mutation. And no double
## mutants either.
## We test:
## - mutator increases mutation rates as seen in:
## - number of clones created
## - number of total mutation events
cat("\n nm2: a runif is", runif(1), "\n")
pops <- 20
ft <- .0001
lni <- 100
no <- 1e7
fi <- rep(0, lni)
muvector <- rep(5e-6, lni)
## scrambling names
names(fi) <- replicate(lni,
paste(sample(letters, 12), collapse = ""))
names(muvector) <- sample(names(fi))
## choose something for mutator
mutator10 <- mutator100 <- fi[5]
mutator10[] <- 10
mutator100[] <- 100
fe <- allFitnessEffects(noIntGenes = fi)
m10 <- allMutatorEffects(noIntGenes = mutator10)
m100 <- allMutatorEffects(noIntGenes = mutator100)
pop10 <- oncoSimulSample(pops,
fe, detectionProb = NA,
mu = muvector,
muEF = m10,
model = "McFL",
finalTime = ft,
mutationPropGrowth = FALSE,
initSize = no,
initMutant = names(mutator10),
sampleEvery = 0.01, thresholdWhole = 1e-20,
detectionSize = 1e9,
detectionDrivers = 9999,
seed = NULL, onlyCancer = FALSE)
pop100 <- oncoSimulSample(pops,
fe, detectionProb = NA,
mu = muvector,
muEF = m100,
model = "McFL",
finalTime = ft,
mutationPropGrowth = FALSE,
initSize = no,
initMutant = names(mutator10),
sampleEvery = 0.01, thresholdWhole = 1e-20,
detectionSize = 1e9,
detectionDrivers = 9999,
seed = NULL, onlyCancer = FALSE)
T1 <- (wilcox.test(NClonesOSS(pop10), NClonesOSS(pop100),
alternative = "less")$p.value < p.value.threshold)
T2 <- (t.test(rowSums(pop10$popSample), rowSums(pop100$popSample),
alternative = "less")$p.value < p.value.threshold)
if(T1 && T2 && T3 && T4 && T5 && T6 && T7 && T8) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1 && T2 && T3 && T4 && T5 && T6 && T7 && T8)
})
date()
date()
test_that(" MCFL Init with different mutators", {
max.tries <- 4
for(tries in 1:max.tries) {
T1 <- T2 <- T3 <- T4 <- T5 <- T6 <- T7 <- T8 <- TRUE
cat("\n mcz2: a runif is", runif(1), "\n")
pops <- 40
ft <- .005
lni <- 50
no <- 1e7
ni <- c(0, 0, 0, rep(0, lni))
## scramble around names
names(ni) <- c("hereisoneagene",
"oreoisasabgene",
"nnhsisthecgene",
replicate(lni,
paste(sample(letters, 12), collapse = "")))
ni <- ni[order(names(ni))]
fe <- allFitnessEffects(noIntGenes = ni)
mutator1 <- mutator2 <- rep(1, lni + 3)
pg1 <- rep(5e-6, lni + 3)
## scramble names of mutator and per-gene too
names(mutator1) <- sample(names(ni))
names(pg1) <- sample(names(ni))
mutator1["hereisoneagene"] <- 100
mutator1["oreoisasabgene"] <- 1
mutator1["nnhsisthecgene"] <- 0.01
m1 <- allMutatorEffects(noIntGenes = mutator1)
m1.pg1.a <- oncoSimulSample(pops,
fe, detectionProb = NA,
mu = pg1,
muEF = m1,
finalTime = ft,
mutationPropGrowth = FALSE,
initSize = no,
model = "McFL",
initMutant = "hereisoneagene",
detectionSize = 1e9,
detectionDrivers = 9999,
sampleEvery = 0.01, thresholdWhole = 1e-20,
seed = NULL, onlyCancer = FALSE)
m1.pg1.b <- oncoSimulSample(pops,
fe, detectionProb = NA,
mu = pg1,
muEF = m1,
finalTime = ft,
mutationPropGrowth = FALSE,
initSize = no,
model = "McFL",
initMutant = "oreoisasabgene",
detectionSize = 1e9,
detectionDrivers = 9999,
sampleEvery = 0.01, thresholdWhole = 1e-20,
seed = NULL, onlyCancer = FALSE)
m1.pg1.c <- oncoSimulSample(pops,
fe, detectionProb = NA,
mu = pg1,
muEF = m1,
finalTime = ft,
mutationPropGrowth = FALSE,
initSize = no,
model = "McFL",
initMutant = "nnhsisthecgene",
detectionSize = 1e9,
detectionDrivers = 9999,
sampleEvery = 0.01, thresholdWhole = 1e-20,
seed = NULL, onlyCancer = FALSE)
T1 <- (wilcox.test(NClonesOSS(m1.pg1.b), NClonesOSS(m1.pg1.a),
alternative = "less")$p.value < p.value.threshold)
T2 <- (wilcox.test(NClonesOSS(m1.pg1.c), NClonesOSS(m1.pg1.b),
alternative = "less")$p.value < p.value.threshold)
T3 <- (t.test(rowSums(m1.pg1.a$popSample),rowSums(m1.pg1.b$popSample),
alternative = "greater")$p.value < p.value.threshold)
T4 <- (t.test(rowSums(m1.pg1.b$popSample),rowSums(m1.pg1.c$popSample),
alternative = "greater")$p.value < p.value.threshold)
if(T1 && T2 && T3 && T4 && T5 && T6 && T7 && T8) break;
}
cat(paste("\n done tries", tries, "\n"))
expect_true(T1 && T2 && T3 && T4 && T5 && T6 && T7 && T8)
})
date()
cat(paste("\n Finished test.mutator-oncoSimulSample.R test at", date(), "\n"))
## singleCell. Stop on 1 driver, mark all except init as drivers.??? Nope,
## as driver present, but not abundant. So stop on two. Too convoluted. If
## I want to test sampling, test sampling. Period.
## converted from test.mutator using
## sed -i 's/median(summary(\([A-Za-z0-9]*\))$NumClones)/median(\1$popSummary\[, "NumClones"\])/g' test.mutator-oncoSimulSample.R
## sed -i 's/mutsPerClone(\([A-Za-z0-9]*\))/rowSums(\1$popSample)/g' test.mutator-oncoSimulSample.R
## sed -i 's/oncoSimulPop(/oncoSimulSample(/' test.mutator-oncoSimulSample.R
## sed -i 's/, mc.cores = 2//' test.mutator-oncoSimulSample.R
## sed -i 's/mc.cores = 2,//' test.mutator-oncoSimulSample.R
## sed -i 's/mc.cores = 2)/)/' test.mutator-oncoSimulSample.R
## sed -i 's/keepEvery = [0-9],//' test.mutator-oncoSimulSample.R
## sed -i 's/, keepEvery = [0-9]//' test.mutator-oncoSimulSample.R
## sed -i 's/keepEvery = [0-9])/)/' test.mutator-oncoSimulSample.R
## sed -i 's/summary(\([A-Za-z0-9]*\))/\1$popSummary\[, c(1:3, 8:9)\]/g' test.mutator-oncoSimulSample.R
## the last is not quite ok. Leaves to sets of the [, c(1:3, 8:9)][, c(1:3, 8:9)]. Replace in emacs.
## and a few others are missed.
cat(paste(" Took ", round(difftime(Sys.time(), inittime, units = "secs"), 2), "\n\n"))
rm(inittime)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.