Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----eval = FALSE, echo = TRUE, message = FALSE-------------------------------
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Ribo-seq HEK293 (2020) Investigative analysis of quality of new Ribo-seq data
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Article: https://f1000research.com/articles/9-174/v2#ref-5
# # Design: Wild type (WT) vs codon optimized (CO) (gene F9)
# library(ORFik)
#
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Config
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Specify paths wanted for NGS data, genome, annotation and STAR index
# # If you use local files, make a conf variable with existing directories
# conf <- config.exper(experiment = "Alexaki_Human",
# assembly = "Homo_sapiens_GRCh38_101",
# type = c("Ribo-seq", "RNA-seq"))
#
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Download fastq files for experiment and rename (Skip if you have the files already)
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # SRA Meta data download (work for ERA and DRA too)
# study <- download.SRA.metadata("PRJNA591214", outdir = conf["fastq Ribo-seq"])
# # Subset
# study.rfp <- study[grep("mRNA-Seq", sample_title, invert = TRUE),]
# study.rna <- study[grep("Ribo-Seq", sample_title, invert = TRUE),]
# # Download fastq files (uses SRR numbers (RUN column) from study))
# download.SRA(study.rfp, conf["fastq Ribo-seq"],
# rename = study.rfp$sample_title, subset = 2000000)
# download.SRA(study.rna, conf["fastq RNA-seq"],
# rename = study.rna$sample_title, subset = 2000000)
#
# # Which organism is this, scientific name, like "Homo sapiens" or "Danio rerio"
# organism <- study$ScientificName[1] # Usually you find organism here, else set it yourself
# paired.end.rfp <- study.rfp$LibraryLayout == "PAIRED"
# paired.end.rna <- study.rna$LibraryLayout == "PAIRED"
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Annotation
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
#
# annotation <- getGenomeAndAnnotation(
# organism = organism,
# genome = TRUE, GTF = TRUE,
# phix = TRUE, ncRNA = TRUE, tRNA = TRUE, rRNA = TRUE,
# output.dir = conf["ref"],
# assembly_type = "primary_assembly"
# )
#
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # STAR index
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Remove max.ram = 20 and SAsparse = 2, if you have more than 64GB ram
# index <- STAR.index(annotation, wait = TRUE, max.ram = 20, SAsparse = 2)
#
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Alignment (with depletion of phix, rRNA, ncRNA and tRNAs) & (with MultiQC of final STAR alignment)
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
#
# STAR.align.folder(conf["fastq Ribo-seq"], conf["bam Ribo-seq"], index,
# paired.end = paired.end.rfp,
# steps = "tr-co-ge", # (trim needed: adapters found, then genome)
# adapter.sequence = "auto", # Adapters are auto detected
# trim.front = 0, min.length = 20)
#
# STAR.align.folder(conf["fastq RNA-seq"], conf["bam RNA-seq"], index,
# paired.end = paired.end.rna,
# steps = "tr-co-ge", # (trim needed: adapters found, then genome)
# adapter.sequence = "auto", # Adapters are auto detected
# trim.front = 0, min.length = 20)
#
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Create experiment (Starting point if alignment is finished)
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# library(ORFik)
# create.experiment(paste0(conf["bam Ribo-seq"], "/aligned/"),
# exper = conf["exp Ribo-seq"],
# fa = annotation["genome"],
# txdb = paste0(annotation["gtf"], ".db"),
# organism = organism,
# pairedEndBam = paired.end.rfp,
# rep = c(1,2,3,1,2,3),
# condition = c(rep("CO", 3), rep("WT", 3)),
# viewTemplate = FALSE)
# create.experiment(paste0(conf["bam RNA-seq"], "/aligned/"),
# exper = conf["exp RNA-seq"],
# fa = annotation["genome"],
# txdb = paste0(annotation["gtf"], ".db"),
# organism = organism,
# pairedEndBam = paired.end.rna,
# rep = c(1,2,3,1,2,3),
# condition = c(rep("CO", 3), rep("WT", 3)),
# viewTemplate = FALSE)
#
# library(ORFik)
# df.rfp <- read.experiment("Alexaki_Human_Ribo-seq")
# df.rna <- read.experiment("Alexaki_Human_RNA-seq")
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Convert files and run Annotation vs alignment QC
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # General QC
# ORFikQC(df.rfp)
# ORFikQC(df.rna)
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # P-shifting of Ribo-seq reads:
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # From ORFikQC it looks like 20, 21, 27 and 28 are candidates for Ribosomal footprints
# shiftFootprintsByExperiment(df.rfp, accepted.lengths = c(20:21, 27:28))
# # Ribo-seq specific QC
# remove.experiments(df.rfp) # Remove loaded data (it is not pshifted)
# ORFik:::RiboQC.plot(df.rfp, BPPARAM = BiocParallel::SerialParam(progressbar = T))
# remove.experiments(df.rfp)
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Create heatmaps (Ribo-seq)
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Pre-pshifting
# heatMapRegion(df.rfp, region = c("TIS", "TTS"), shifting = "5prime", type = "ofst",
# outdir = paste0(dirname(df.rfp$filepath[1]), "/QC_STATS/heatmaps/pre-pshift/"))
# remove.experiments(df.rfp)
# # After pshifting
# heatMapRegion(df.rfp, region = c("TIS", "TTS"), shifting = "5prime", type = "pshifted",
# outdir = paste0(dirname(df.rfp$filepath[1]), "/QC_STATS/heatmaps/pshifted/"))
#
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Differential translation analysis (condition: WT vs CO)
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # We here get 11 unique DTEG genes
# # Now let's check if the CO group overexpress the F9 Gene (ENSG00000101981):
# res <- DTEG.analysis(df.rfp, df.rna, design = "condition")
# significant_genes <- res[Regulation != "No change",]
# gene_names <- txNamesToGeneNames(significant_genes$id, df.rfp)
# "ENSG00000101981" %in% unique(gene_names) # TRUE
# # It does, good good.
# # How is it regulated ?
# significant_genes[which(gene_names == "ENSG00000101981"),] # By mRNA abundance
#
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Peak detection (strong peaks in CDS)
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
#
# peaks <- findPeaksPerGene(loadRegion(df.rfp, "cds"), reads = RFP_WT_r1, type = "max")
# ORFik::windowCoveragePlot(peaks, type = "cds", scoring = "transcriptNormalized")
# # The gene does not have a strong max peak in WT rep1
# "ENSG00000101981" %in% peaks$gene_id # FALSE
#
# peaks_CO <- findPeaksPerGene(loadRegion(df.rfp, "cds"), reads = RFP_CO_r1, type = "max")
# # The gene does not have a strong max peak in CO rep1 either
# "ENSG00000101981" %in% peaks_CO$gene_id # FALSE
#
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # Feature table (From WT rep 1)
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# cds <- loadRegion(df.rfp, "cds")
# cds <- ORFik:::removeMetaCols(cds) # Dont need them
# cds <- cds[filterTranscripts(df.rfp)] # Filter to sane transcripts (annotation is not perfect)
# dt <- computeFeatures(cds,
# RFP = fimport(filepath(df.rfp[6,], "pshifted")),
# RNA = fimport(filepath(df.rna[6,], "ofst")), Gtf = df.rfp,
# grl.is.sorted = TRUE, faFile = df.rfp,
# weight.RFP = "score", weight.RNA = "score",
# riboStart = 21, uorfFeatures = FALSE)
# # The 8 remaining significant DTEGs.
# dt[names(cds) %in% significant_genes$id,]
# # All genes with strong 3nt periodicity of Ribo-seq
# dt[ORFScores > 5,]
# # Not all genes start with ATG, possible errors in annotation
# table(dt$StartCodons)
# # All genes with strong start codon peak
# dt[startCodonCoverage > 5,]
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# # uORF analysis (advanced) (using the extension package to ORFik: uORFomePipe)
# # Will create a mysql database + files with results
# #¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤#
# devtools::install_github("Roleren/uORFomePipe", dependencies = TRUE)
# library(uORFomePipe)
# find_uORFome("/media/roler/S/data/Bio_data/projects/Alexaki_uORFome/",
# df.rfp = df.rfp, df.rna = df.rna, df.cage = NULL, biomart = NULL,
# startCodons = "ATG|CTG|TTG|GTG", BPPARAM = BiocParallel::MulticoreParam(2))
#
# grl <- getUorfsInDb()
# pred <- readTable("finalPredWithProb")$prediction
# cov <- readTable("startCodonCoverage")
# grl[pred == 1 & rowSums(cov) > 5]
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.