Nothing
fdr.int2 <- function (object, delta = 50, N = 100, av = "median")
{
if (!(class(object)=="marrayRaw") & !(class(object)=="marrayNorm")){
stop("Object should be of class marrayRaw or marrayNorm")
}
FDRpL <- list(NULL)
FDRnL <- list(NULL)
AL <- maA(object)
ML <- maM(object)
index <- c(1:dim(object)[[2]])
for (ii in index){
A <- AL[,ii]
M <- ML[,ii]
XavP <- double(length(M) * N)
### GENERATING BACKGROUND DISTRIBUTION
for (i in 1:N) {
XavP[((i - 1) * length(M) + 1):(i * length(M))] <- ma.vector(A,
sample(M), av = av, delta = delta)
}
XavP <- XavP[!is.na(XavP)]
XavP.l <- length(XavP)
### STATISTICS OF ORIGINAL DATA
Xav <- ma.vector(A, M, av = av, delta = delta)
### COMPARING STATISTICS OF ORIGINAL DATA AND PERMUTATED DATA
o <- 1:length(Xav)
ro <- o[rank(Xav)]
XavS <- sort(Xav)
XavS.l <- length(XavS)
XN <- double(length = length(XavS)) + NA
for (i in 1:XavS.l) {
XN[i] <- sum(XavP >= XavS[i], na.rm = TRUE)
}
XN <- XN/(XavP.l/XavS.l)
### CALCULATION OF FALSE POSITIVES RATES
pFDR <- double(length = length(Xav)) + NA
for (i in (delta + 1):XavS.l) {
pFDR[XavS.l - i + 1] <- XN[XavS.l - i + 1]/(XN[XavS.l -
i + 1] + i)
}
pFDR[pFDR == 0] <- 1/(XavS.l * N)
nFDR <- double(length = length(Xav)) + NA
for (i in 1:XavS.l) {
nFDR[i] <- (XavS.l - XN[i])/((XavS.l - XN[i]) + i)
}
nFDR[nFDR == 0] <- 1/(XavS.l * N)
FDRpL[[ii]] <- pFDR[ro]
FDRnL[[ii]] <- nFDR[ro]
}
list(FDRp=FDRpL,FDRn=FDRnL)
}
#######################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.