Nothing
#'testGScogps
#'
#'Performs gene set test on outlier counts
#'@usage testGScogps (outlierCts, geneSets)
#'@param outlierCts Vector with gene names and outlier counts
#'@param geneSets List of gene sets
#'@import limma
#'@return A vector with rank sum gene set statistics
#'@examples
#'\dontrun{
#'data(ExampleData)
#'data('_BC_GS')
#'
#' #Set up your phenotype
#' phenotype <- rep(0, 69)
#' phenotype[annot[, 3] == 'Event'] <- 1
#' names(phenotype) <- rownames(annot)
#'
#' # set up values for expr-meth-cnv in that order
#' tailLRL <- c('left', 'right', 'left')
#'
#' dataSet <- list(expr, meth, cnv)
#'
#' tibLRLcorr <- copaInt(dataSet, phenotype, tails=tailLRL, corr=TRUE)
#' gsTibLRLcorr <- testGScogps(tibLRLcorr, pathGS)
#' }
#'@references Ochs, M. F., Farrar, J. E., Considine, M., Wei, Y., Meshinchi, S.,
#' & Arceci, R. J. (n.d.). Outlier Analysis and Top Scoring Pair for Integrated
#' Data Analysis and Biomarker Discovery. IEEE/ACM Transactions on Computational
#' Biology and Bioinformatics, 1-1. doi:10.1109/tcbb.2013.153
#'@export
testGScogps <- function(outlierCts, geneSets) {
N <- length(geneSets)
pGS <- vector(length=N)
duplGenes <- duplicated(names(outlierCts))
outlierCts <- outlierCts[!duplGenes]
for (i in 1:N) {
genes <- geneSets[[i]]
genes <- unique(genes)
genes <- names(outlierCts) %in% genes
if (sum(genes) > 4) {
pGS[i] <- wilcoxGST(genes, outlierCts, alternative='mixed')
} else {
pGS[i] <- 1.0
}
}
names(pGS) <- names(geneSets)
return(pGS)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.