Nothing
#' Count 96 trinucleotide mutation occurrences
#'
#' @details
#' This function is called by mut_matrix. It calculates the 96 trinucleotide context for all variants
#' and then splits these per GRanges (samples). It then calculates how often each 96 trinucleotide context occurs.
#'
#'
#' @param type_context result from type_context function
#' @param gr_sizes A vector indicating the number of variants per GRanges
#' @return Mutation matrix with 96 trinucleotide mutation occurrences
#'
#' @importFrom magrittr %>%
mut_96_occurrences <- function(type_context, gr_sizes) {
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
categories <- count <- NULL
# Determine nr of bases
nr_bases <- nchar(type_context$context[[1]])
middle_base <- ceiling(nr_bases / 2)
# Determine all possible contexts
bases_left <- c("A", "C", "G", "T")
bases_right <- c("A", "C", "G", "T")
base_subs <- c("[C>A]", "[C>G]", "[C>T]", "[T>A]", "[T>C]", "[T>G]")
# Loop over each base substitution
full_context_poss <- vector("list", length(base_subs))
for (i in seq_along(base_subs)) {
sub <- base_subs[[i]]
sub_context <- sub
# Repeatedly add bases left and right
for (j in seq_len(middle_base - 1)) {
combi_tb <- tidyr::crossing(bases_left, sub_context, bases_right)
sub_context <- paste0(combi_tb$bases_left, combi_tb$sub_context, bases_right)
}
full_context_poss[[i]] <- sub_context
}
full_context_poss <- do.call(c, full_context_poss)
# Determine 96 context for all variants
full_context <- stringr::str_c(
substr(type_context$context, 1, middle_base - 1),
"[",
type_context$types,
"]",
substr(type_context$context, middle_base + 1, nr_bases)
) %>%
factor(levels = full_context_poss)
# Set names if they are not yet present
if (is.null(names(gr_sizes))) {
names(gr_sizes) <- seq_along(gr_sizes)
}
# Create vector describing the sample of each variant
sample_vector <- rep(names(gr_sizes), gr_sizes) %>%
factor(levels = names(gr_sizes))
# Count the mutations per type and per sample
counts <- tibble::tibble("categories" = full_context, "sample" = sample_vector) %>%
dplyr::filter(!is.na(categories)) %>%
dplyr::group_by(categories, sample, .drop = FALSE) %>%
dplyr::summarise(count = dplyr::n())
# Transform the data into a mutation matrix
counts <- tidyr::spread(counts, key = sample, value = count, fill = 0)
unnecesary_cols <- which(colnames(counts) == "<NA>")
mut_mat <- as.matrix(counts[, -c(1, unnecesary_cols)])
rownames(mut_mat) <- counts$categories
return(mut_mat)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.