Nothing
# stamlab/import.R
#------------------------------------------------------------------------------------------------------------------------
library (org.Hs.eg.db)
library (org.Mm.eg.db)
#------------------------------------------------------------------------------------------------------------------------
printf <- function(...) print(noquote(sprintf(...)))
#------------------------------------------------------------------------------------------------------------------------
run = function (dataDir)
{
dataDir <- file.path(dataDir, "stamlab")
rawMatrixList <- readRawMatrices (dataDir)
novels <- readNovelStatus (dataDir)
matrices <- extractAndNormalizeMatrices (rawMatrixList)
tbl.md <- createMetadataTable (matrices, novels)
matrices <- renameMatrices (matrices, tbl.md)
serializedFile <- "stamlab.RData"
save (matrices, tbl.md, file=serializedFile)
printf("saved %d matrices to %s", length(matrices), serializedFile)
printf("next step: copy %s to <packageRoot>/MotifDb/inst/extdata, rebuild package", serializedFile)
} # run
#------------------------------------------------------------------------------------------------------------------------
readRawMatrices = function (dataDir)
{
filename <- file.path(dataDir, "de.novo.pwm")
all.lines = scan (filename, what=character(0), sep='\n', quiet=TRUE)
title.lines = grep ('UW.Motif', all.lines)
title.line.count <<- length (title.lines)
max = title.line.count - 1
pwms = list ()
for (i in 1:max) {
start.line = title.lines [i]
end.line = title.lines [i+1] - 1
new.pwm = parsePwm (all.lines [start.line:end.line])
pwms = c (pwms, list (new.pwm))
} # for i
invisible (pwms)
} # readRawMatrices
#------------------------------------------------------------------------------------------------------------------------
readNovelStatus = function (dataDir)
{
filename <- file.path(dataDir, "novels.txt")
novels = scan (filename, what=character(0), sep='\n', quiet=TRUE)
all.names = sprintf ('UW.Motif.%04d', 1:683)
status = rep (FALSE, length (all.names))
true.novels = match (novels, all.names)
status [true.novels] = TRUE
names (status) = all.names
return (status)
} # readNovelStatus
#------------------------------------------------------------------------------------------------------------------------
extractAndNormalizeMatrices = function (pwm.list)
{
ms = sapply (pwm.list, function (element) element$matrix)
nms = normalizeMatrices (ms)
names (nms) = sapply (pwm.list, function (element) element$title)
return (nms)
} # extractAndNormalizeMatrices
#------------------------------------------------------------------------------------------------------------------------
# matrices = sapply (list.pwms, function (pwm) pwm$matrix)
# matrix.names = sapply (list.pwms, function (pwm) pwm$title)
# names (matrices) = matrix.names
convertRawMatricesToStandard = function (tbl.rmat)
{
matrix.ids = unique (tbl.rmat$id)
result = vector ('list', length (matrix.ids))
i = 1
for (matrix.id in matrix.ids) {
tbl.sub = subset (tbl.rmat, id == matrix.id)
# sanity check this rather unusual representation of a position count matrix
base.count = as.data.frame (table (tbl.sub$base))
stopifnot (base.count$Var1 == c ('A', 'C', 'G', 'T'))
# conservative length check. actually expect sequence lengths of 6 - 20 bases
if (base.count$Freq [1] < 4 && base.count$Freq [1] > 30) {
printf ('matrix.id %s has sequence of length %d', matrix.id, base.count$Freq [1])
}
stopifnot (all (base.count$Freq == base.count$Freq [1]))
nucleotide.counts = tbl.sub$count
row.names = c('A', 'C', 'G', 'T');
col.names = 1:(nrow (tbl.sub) / 4)
m = matrix (nucleotide.counts, byrow=TRUE, nrow=4, dimnames=list(row.names, col.names))
result [[i]] = m
i = i + 1
} # for matrix.id
names (result) = matrix.ids
return (result)
} # convertRawMatricesToStandard
#------------------------------------------------------------------------------------------------------------------------
createAnnotationTable = function ()
{
tbl.matrix = read.table ('MATRIX.txt', sep='\t', header=F, as.is=TRUE)
colnames (tbl.matrix) = c ('id', 'category', 'mID', 'version', 'binder')
tbl.protein = read.table ('MATRIX_PROTEIN.txt', sep='\t', header=F, as.is=TRUE)
colnames (tbl.protein) = c ('id', 'proteinID')
tbl.species = read.table ('MATRIX_SPECIES.txt', sep='\t', header=F, as.is=TRUE)
colnames (tbl.species) = c ('id', 'speciesID')
tbl.anno = read.table ('MATRIX_ANNOTATION.txt', sep='\t', header=F, as.is=TRUE, quote="")
colnames (tbl.anno) = c ('id', 'attribute', 'value')
tbl.family = subset (tbl.anno, attribute=='family') [, -2];
colnames (tbl.family) = c ('id', 'family')
tbl.tax = subset (tbl.anno, attribute=='tax_group') [,-2];
colnames (tbl.tax) = c ('id', 'tax')
tbl.class = subset (tbl.anno, attribute=='class') [,-2];
colnames (tbl.class) = c ('id', 'class')
tbl.comment = subset (tbl.anno, attribute=='comment')[,-2];
colnames (tbl.comment) = c ('id', 'comment')
tbl.pubmed = subset (tbl.anno, attribute=='medline')[,-2];
colnames (tbl.pubmed) = c ('id', 'pubmed')
tbl.type = subset (tbl.anno, attribute=='type')[,-2];
colnames (tbl.type) = c ('id', 'type')
tbl.md = merge (tbl.matrix, tbl.species, all.x=TRUE)
tbl.md = merge (tbl.md, tbl.protein, all.x=TRUE)
tbl.md = merge (tbl.md, tbl.family, all.x=TRUE)
tbl.md = merge (tbl.md, tbl.tax, all.x=TRUE)
tbl.md = merge (tbl.md, tbl.class, all.x=TRUE)
tbl.md = merge (tbl.md, tbl.pubmed, all.x=TRUE)
tbl.md = merge (tbl.md, tbl.type, all.x=TRUE)
fullID = paste (tbl.md$mID, tbl.md$version, sep='.')
tbl.md = cbind (fullID, tbl.md, stringsAsFactors=FALSE)
invisible (tbl.md)
} # createAnnotationTable
#------------------------------------------------------------------------------------------------------------------------
# assemble these columns:
# names=character(), # species-source-gene: stamlab-Hsapiens-UW.Motif.0001
# nativeNames=character(), # UW.Motif.0001
# geneSymbols=character(), # NA
# sequenceCounts=integer(), # NA
# organisms=character(), # Hsapiens
# bindingMolecules=character(), # NA
# bindingMoleculeIdTypes=character(), # NA
# bindingDomainTypes=character(), # NA
# dataSources=character(), # stamlab
# experimentTypes=character(), # digital genomic footprinting
# pubmedIDs=character(), # 22959076
# tfFamilies=character()) # NA
#
# from these
#
createMetadataTable = function (matrices, novels)
{
options (stringsAsFactors=FALSE)
tbl.md = data.frame ()
matrix.ids = names (matrices)
for (matrix.id in matrix.ids) {
matrix = matrices [[matrix.id]]
taxon.code = 'Hsapiens'
geneId.info = NA
new.row = list (providerName=matrix.id,
providerId=matrix.id,
dataSource='stamlab',
geneSymbol=NA,
geneId=NA,
geneIdType=NA,
proteinId=NA,
proteinIdType=NA,
organism='Hsapiens',
sequenceCount=NA,
bindingSequence=NA_character_,
bindingDomain=NA,
tfFamily=NA,
experimentType='digital genomic footprinting',
pubmedID="22955618")
tbl.md = rbind (tbl.md, data.frame (new.row, stringsAsFactors=FALSE))
full.name = sprintf ('%s-%s-%s', 'Hsapiens', 'stamlab', matrix.id)
rownames (tbl.md) [nrow (tbl.md)] = full.name
} # for i
novelPFM = rep ('knownMotif', nrow (tbl.md))
novels.ordered = novels [tbl.md$providerName] # make sure we follow the order in the tbl
novelPFM [which (novels.ordered)] = 'novelMotif'
tbl.md$geneId = novelPFM
tbl.md$geneIdType = rep (NA_character_, nrow (tbl.md))
invisible (tbl.md)
} # createMetadataTable
#------------------------------------------------------------------------------------------------------------------------
renameMatrices = function (matrices, tbl.md)
{
stopifnot (length (matrices) == nrow (tbl.md))
names (matrices) = rownames (tbl.md)
invisible (matrices)
} # renameMatrices
#------------------------------------------------------------------------------------------------------------------------
convertTaxonCode = function (ncbi.code)
{
#if (is.na (ncbi.code))
# return (NA_character_)
ncbi.code = as.character (ncbi.code)
if (ncbi.code %in% c ('-', NA_character_, 'NA'))
return ('Vertebrata')
tbl = data.frame (code= c('10090', '10116', '10117', '3702', '3888', '4094', '4102',
'4151', '4513', '4565', '4577', '4932', '6239', '7227', '7729',
'7742', '8022', '8355', '8364', '9031', '9606', '9913', '9986'),
name=c ('Mmusculus', 'Rnorvegicus', 'Rrattus', 'Athaliana', 'Psativum',
'Nsylvestris', 'Phybrida', 'Amajus', 'Hvulgare', 'Taestivam',
'Zmays', 'Scerevisiae', 'Celegans', 'Dmelanogaster',
'Hroretzi', 'Vertebrata', 'Omykiss', 'Xlaevis', 'Xtropicalis',
'Gallus', 'Hsapiens', 'Btaurus', 'Ocuniculus'),
stringsAsFactors=FALSE)
ncbi.code = as.character (ncbi.code)
index = which (tbl$code == ncbi.code)
if (length (index) == 1)
return (tbl$name [index])
else {
write (sprintf (" unable to map organism code |%s|", ncbi.code), stderr ())
return (NA_character_)
}
} # convertTaxonCode
#------------------------------------------------------------------------------------------------------------------------
# an empirical and not altogether trustworthy solution to identifying identifier types.
guessProteinIdentifierType = function (moleculeName)
{
if (nchar (moleculeName) == 0)
return (NA_character_)
if (is.na (moleculeName))
return (NA_character_)
first.char = substr (moleculeName, 1, 1)
if (first.char == 'Y')
return ('SGD')
if (first.char %in% c ('P', 'Q', 'O', 'A', 'C'))
return ('UNIPROT')
if (length (grep ('^EAW', moleculeName)) == 1)
return ('NCBI')
if (length (grep ('^EAX', moleculeName)) == 1)
return ('NCBI')
if (length (grep ('^NP_', moleculeName)) == 1)
return ('REFSEQ')
if (length (grep ('^BAD', moleculeName)) == 1)
return ('EMBL')
return (NA_character_)
} # guessProteinIdentifierType
#------------------------------------------------------------------------------------------------------------------------
normalizeMatrices = function (matrices)
{
mtx.normalized = sapply (matrices, function (mtx) apply (mtx, 2, function (colvector) colvector / sum (colvector)))
invisible (mtx.normalized)
} # normalizeMatrices
#------------------------------------------------------------------------------------------------------------------------
assignGeneId = function (proteinId)
{
if (!exists ('id.uniprot.human')) {
tbl = toTable (org.Hs.egUNIPROT)
id.uniprot.human <<- as.character (tbl$gene_id)
names (id.uniprot.human) <<- tbl$uniprot_id
tbl = toTable (org.Hs.egREFSEQ)
tbl = tbl [grep ('^NP_', tbl$accession),]
id.refseq.human <<- as.character (tbl$gene_id)
names (id.refseq.human) <<- tbl$accession
tbl = toTable (org.Mm.egUNIPROT)
id.uniprot.mouse <<- as.character (tbl$gene_id)
names (id.uniprot.mouse) <<- tbl$uniprot_id
tbl = toTable (org.Mm.egREFSEQ)
tbl = tbl [grep ('^NP_', tbl$accession),]
id.refseq.mouse <<- as.character (tbl$gene_id)
names (id.refseq.mouse) <<- tbl$accession
}
proteinId = strsplit (proteinId, '\\.')[[1]][1] # remove any trailing '.*'
if (proteinId %in% names (id.uniprot.human))
return (list (geneId=as.character (id.uniprot.human [proteinId]), type='ENTREZ'))
if (proteinId %in% names (id.uniprot.mouse))
return (list (geneId=as.character (id.uniprot.mouse [proteinId]), type='ENTREZ'))
if (proteinId %in% names (id.refseq.human))
return (list (geneId=as.character (id.refseq.human [proteinId]), type='ENTREZ'))
if (proteinId %in% names (id.refseq.mouse))
return (list (geneId=as.character (id.refseq.mouse [proteinId]), type='ENTREZ'))
found.leading.Y = length (grep ("^Y", proteinId, perl=TRUE))
if (found.leading.Y == 1)
return (list (geneId=proteinId, type='SGD'))
return (list (geneId=NA_character_, type=NA_character_))
} # assignGeneId
#------------------------------------------------------------------------------------------------------------------------
parsePwm = function (text)
{
#printf ('parsing pwm %s', text [1])
lines = strsplit (text, '\t')
title = lines [[1]][1]
consensus.sequence = lines [[1]][2]
line.count = length (lines)
#printf ('%s: %s', title, consensus.sequence)
result = matrix (nrow=line.count-1, ncol=4, dimnames=list(1:(line.count-1), c ('A','C','G','T')))
row = 1
for (line in lines [2:line.count]) {
result [row,] = as.numeric (line)
row = row + 1
} # for line
result = t (result)
return (list (title=title, consensus.sequence=consensus.sequence, matrix=result))
} # parsePwm
#------------------------------------------------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.