Nothing
## ---- eval=FALSE--------------------------------------------------------------
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install(MethylMix)
## ---- eval=FALSE--------------------------------------------------------------
# cancerSite <- "OV"
# targetDirectory <- paste0(getwd(), "/")
# GetData(cancerSite, targetDirectory)
## ---- eval=FALSE--------------------------------------------------------------
# cancerSite <- "OV"
# targetDirectory <- paste0(getwd(), "/")
#
# library(doParallel)
# cl <- makeCluster(5)
# registerDoParallel(cl)
# GetData(cancerSite, targetDirectory)
# stopCluster(cl)
## ---- eval=FALSE, tidy=TRUE---------------------------------------------------
# cancerSite <- "OV"
# targetDirectory <- paste0(getwd(), "/")
#
# cl <- makeCluster(5)
# registerDoParallel(cl)
#
# # Downloading methylation data
# METdirectories <- Download_DNAmethylation(cancerSite, targetDirectory)
# # Processing methylation data
# METProcessedData <- Preprocess_DNAmethylation(cancerSite, METdirectories)
# # Saving methylation processed data
# saveRDS(METProcessedData, file = paste0(targetDirectory, "MET_", cancerSite, "_Processed.rds"))
#
# # Downloading gene expression data
# GEdirectories <- Download_GeneExpression(cancerSite, targetDirectory)
# # Processing gene expression data
# GEProcessedData <- Preprocess_GeneExpression(cancerSite, GEdirectories)
# # Saving gene expression processed data
# saveRDS(GEProcessedData, file = paste0(targetDirectory, "GE_", cancerSite, "_Processed.rds"))
#
# # Clustering probes to genes methylation data
# METProcessedData <- readRDS(paste0(targetDirectory, "MET_", cancerSite, "_Processed.rds"))
# res <- ClusterProbes(METProcessedData[[1]], METProcessedData[[2]])
#
# # Putting everything together in one file
# toSave <- list(METcancer = res[[1]], METnormal = res[[2]], GEcancer = GEProcessedData[[1]], GEnormal = GEProcessedData[[2]], ProbeMapping = res$ProbeMapping)
# saveRDS(toSave, file = paste0(targetDirectory, "data_", cancerSite, ".rds"))
#
# stopCluster(cl)
## ---- eval=FALSE, tidy=TRUE---------------------------------------------------
# METcancer = matrix(data = methylation_data, nrow = nb_of_genes, ncol = nb_of_samples)
# METnormal = matrix(data = methylation_data, nrow = nb_of_genes, ncol = nb_of_samples)
# GEcancer = matrix(data = expression_data, nrow = nb_of_genes, ncol = nb_of_samples)
# ClusterProbes(MET_Cancer, MET_Normal, CorThreshold = 0.4)
## ---- tidy=TRUE---------------------------------------------------------------
library(MethylMix)
library(doParallel)
data(METcancer)
data(METnormal)
data(GEcancer)
head(METcancer[, 1:4])
head(METnormal)
head(GEcancer[, 1:4])
## ---- tidy=TRUE, warning=F----------------------------------------------------
MethylMixResults <- MethylMix(METcancer, GEcancer, METnormal)
## ---- tidy=TRUE, eval=FALSE---------------------------------------------------
# library(doParallel)
# cl <- makeCluster(5)
# registerDoParallel(cl)
# MethylMixResults <- MethylMix(METcancer, GEcancer, METnormal)
# stopCluster(cl)
## ---- tidy=TRUE---------------------------------------------------------------
MethylMixResults$MethylationDrivers
MethylMixResults$NrComponents
MethylMixResults$MixtureStates
MethylMixResults$MethylationStates[, 1:5]
MethylMixResults$Classifications[, 1:5]
# MethylMixResults$Models
## ---- tidy=TRUE, eval=F-------------------------------------------------------
# # Plot the most famous methylated gene for glioblastoma
# plots <- MethylMix_PlotModel("MGMT", MethylMixResults, METcancer)
# plots$MixtureModelPlot
## ---- tidy=TRUE, eval=F-------------------------------------------------------
# # Plot MGMT also with its normal methylation variation
# plots <- MethylMix_PlotModel("MGMT", MethylMixResults, METcancer, METnormal = METnormal)
# plots$MixtureModelPlot
## ---- tidy=TRUE, eval=F-------------------------------------------------------
# # Plot a MethylMix model for another gene
# plots <- MethylMix_PlotModel("ZNF217", MethylMixResults, METcancer, METnormal = METnormal)
# plots$MixtureModelPlot
## ---- tidy=TRUE, eval=F-------------------------------------------------------
# # Also plot the inverse correlation with gene expression (creates two separate plots)
# plots <- MethylMix_PlotModel("MGMT", MethylMixResults, METcancer, GEcancer, METnormal)
# plots$MixtureModelPlot
# plots$CorrelationPlot
## ---- eval = FALSE, tidy=TRUE-------------------------------------------------
# # Plot all functional and differential genes
# for (gene in MethylMixResults$MethylationDrivers) {
# MethylMix_PlotModel(gene, MethylMixResults, METcancer, METnormal = METnormal)
# }
## ---- tidy=TRUE, echo = FALSE-------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.