Nothing
## ----setup, echo=FALSE--------------------------------------------------------
knitr::opts_chunk$set(message=FALSE, fig.path='figures/')
## ---- message = FALSE, tidy = TRUE--------------------------------------------
## Load MetaboSignal
library(MetaboSignal)
## ---- tidy = TRUE-------------------------------------------------------------
## Regulatory interactions
data("regulatory_interactions")
head(regulatory_interactions[, c(1,3,5)])
## KEGG metabolic pathways
data("kegg_pathways")
head(kegg_pathways[, -2])
## KEGG signaling pathways
tail(kegg_pathways[, -2])
## ---- tidy = TRUE, eval=FALSE-------------------------------------------------
# ## Get IDs of metabolic and signaling human pathways
# hsa_paths <- MS_getPathIds(organism_code = "hsa")
## ---- tidy = TRUE, tidy.opts=list(indent = 4, width.cutoff = 50)--------------
## Create metabo_paths and signaling_paths vectors
metabo_paths <- kegg_pathways[kegg_pathways[, "Path_type"] == "metabolic", "Path_id"]
signaling_paths <- kegg_pathways[kegg_pathways[, "Path_type"] == "signaling", "Path_id"]
## ----tidy = TRUE, tidy.opts=list(indent = 4, width.cutoff = 50), results='asis', eval=FALSE----
# ## Build KEGG network (might take a while)
# keggNet_example <- MS_keggNetwork(metabo_paths, signaling_paths, expand_genes = TRUE,
# convert_entrez = TRUE)
## ---- tidy = TRUE-------------------------------------------------------------
## See network format
head(keggNet_example)
## ---- tidy = TRUE, tidy.opts=list(indent = 4, width.cutoff = 55)--------------
## Get all types of interaction
all_types <- unique(unlist(strsplit(keggNet_example[, "interaction_type"], "/")))
all_types <- gsub("k_", "", all_types)
## Select wanted interactions
wanted_types <- setdiff(all_types, c("unknown", "indirect-compound", "indirect-effect",
"dissociation", "state-change", "binding",
"association"))
print(wanted_types) # interactions that will be retained
## Filter keggNet_example to retain only wanted interactions
wanted_types <- paste(wanted_types, collapse = "|")
keggNet_clean <- keggNet_example[grep(wanted_types, keggNet_example[, 3]), ]
## ---- tidy = TRUE-------------------------------------------------------------
## Build regulatory network of TRRUST interactions
trrustNet_example <- MS2_ppiNetwork(datasets = "trrust")
## Build regulatory network of OmniPath interactions
omnipathNet_example <- MS2_ppiNetwork(datasets = "omnipath")
## Build regulatory network by merging OmniPath and TRRUST interactions
ppiNet_example <- MS2_ppiNetwork(datasets = "all")
## See network format
head(ppiNet_example)
## ----tidy = TRUE, tidy.opts=list(indent = 4, width.cutoff = 60), results='asis', eval=FALSE----
# ## Merge networks
# mergedNet_example <- MS2_mergeNetworks(keggNet_clean, ppiNet_example)
## ---- message = FALSE, tidy = TRUE--------------------------------------------
## See network format
head(mergedNet_example)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.