Nothing
#' Function to load ovarian cancer expression sets from the Experiment Hub
#'
#' This function returns ovarian cancer datasets from the hub and a vector of patients from the datasets that are most likely duplicates
#' @param removeDuplicates remove patients with a Spearman correlation greater than or equal to 0.98 with other patient expression profiles (default TRUE)
#' @param quantileCutoff A nueric between 0 and 1 specifying to remove genes with standard deviation below the required quantile (default 0)
#' @param rescale apply centering and scaling to the expression sets (default FALSE)
#' @param minNumberGenes an integer specifying to remove expression sets with less genes than this number (default 0)
#' @param minNumberEvents an integer specifying how man survival events must be in the dataset to keep the dataset (default 0)
#' @param minSampleSize an integer specifying the minimum number of patients required in an eset (default 0)
#' @param removeRetracted remove datasets from retracted papers (default TRUE, currently just PMID17290060 dataset)
#' @param removeSubsets remove datasets that are a subset of other datasets (defeault TRUE, currently just PMID19318476)
#' @param keepCommonOnly remove probes not common to all datasets (default FALSE)
#' @param imputeMissing remove patients from datasets with missing expression values
#' @return a list with 2 elements. The First element named esets contains the datasets. The second element named duplicates contains
#' a vector with patient IDs for the duplicate patients (those with Spearman correlation greater than or equal to 0.98 with other patient expression profiles).
#' @export
#' @importFrom Biobase esApply featureNames sampleNames exprs pData experimentData
#' @importFrom lattice levelplot
#' @importFrom impute impute.knn
#' @importFrom ExperimentHub ExperimentHub
#' @importFrom AnnotationHub query
#' @importFrom stats complete.cases sd quantile
#' @examples
#'
#' esetsAndDups = loadOvarianEsets()
loadOvarianEsets = function(removeDuplicates = TRUE, quantileCutoff = 0, rescale = FALSE, minNumberGenes = 0,
minNumberEvents = 0, minSampleSize = 0, removeRetracted = TRUE, removeSubsets = TRUE,
keepCommonOnly = FALSE, imputeMissing = FALSE)
{
duplicates = NULL
#if(getRversion() >= "2.15.1") utils::globalVariables(c("."), add = F)
## -----------------------------------------------------------------------------
## needed functions
## -----------------------------------------------------------------------------
filterQuantile <- function(object, q){
if (!identical(q >=0 && q < 1, TRUE))
stop("require 0 <= q < 1")
if (!identical(class(object) == "ExpressionSet", TRUE))
stop("object must be an ExpressionSet")
geneSd <- Biobase::esApply(object,1,sd, na.rm=TRUE)
gene.quantile <- stats::quantile(geneSd, probs=q)
actual.makescutoff <- sum(geneSd < gene.quantile) / length(geneSd)
##make sure the correct number of genes are getting filtered:
if (abs(q - actual.makescutoff) > 0.01){
stop("Not scaling this object, likely pre-scaled.")
}else{
object <- object[geneSd > gene.quantile, ]
}
return(object)
}
##recursive intersect function
intersectMany <- function(lst){
## Find the intersection of multiple vectors stored as elements of a
## list, through a tail-recursive function.
if (length(lst)==2){
return(intersect(lst[[1]],lst[[2]]))
}else{
return(intersectMany(c(list(intersect(lst[[1]],lst[[2]])),lst[seq(-1, -2)])))
}
}
##Split out non-specific probe sets
expandProbesets <- function (eset, sep = "///"){
x <- lapply(Biobase::featureNames(eset), function(x) strsplit(x, sep)[[1]])
eset <- eset[order(vapply(x, length, numeric(1))), ]
x <- lapply(Biobase::featureNames(eset), function(x) strsplit(x, sep)[[1]])
idx <- unlist(vapply(x, function(i) rep(i, length(x)), character(length(x))))
xx <- !duplicated(unlist(x))
idx <- idx[xx]
x <- unlist(x)[xx]
eset <- eset[idx, ]
Biobase::featureNames(eset) <- x
eset
}
## -----------------------------------------------------------------------------
##load the esets
## -----------------------------------------------------------------------------
hub = ExperimentHub::ExperimentHub()
#AnnotationHub::possibleDates(hub)
ovarianData = query(hub, "MetaGxOvarian")
esets <- list()
for(i in seq_len(length(ovarianData)))
{
esets[[i]] = ovarianData[[names(ovarianData)[i]]]
names(esets)[i] = ovarianData[i]$title
}
## -----------------------------------------------------------------------------
##Explicit removal of samples from specified datasets:
## -----------------------------------------------------------------------------
delim <- ":" ##This is the delimiter used to specify dataset:sample,
## same as used in metagx getbrcadata
#load("inst\\extdata\\BenDuplicate.rda")
#source(system.file("extdata", "patientselection.config", package="MetaGxOvarian"))
load(system.file("extdata", "duplicates.rda", package="MetaGxOvarian"))
rmix <- duplicates
ii <- 1
while (length(rmix) > ii){
rmix <- rmix [!is.element(names(rmix), rmix[[ii]])]
ii <- ii+1
}
rmix <- unique(unlist(rmix))
message("Clean up the esets.")
for (i in seq_len(length(esets))){
eset <- esets[[i]]
##filter genes with standard deviation below the required quantile
if(quantileCutoff > 0 && quantileCutoff < 1){
eset <- filterQuantile(eset, q=quantileCutoff)
}
##rescale to z-scores
if(rescale == TRUE){
Biobase::exprs(eset) <- t(scale(t(Biobase::exprs(eset))))
}
if(removeDuplicates == TRUE){
keepix <- setdiff(Biobase::sampleNames(eset), rmix)
Biobase::exprs(eset) <- Biobase::exprs(eset)[, keepix, drop=FALSE]
Biobase::pData(eset) <- Biobase::pData(eset)[keepix, , drop=FALSE]
}
##include study if it has enough samples and events:
if (!is.na(minNumberEvents)
&& exists("minSampleSize") && !is.na(minSampleSize)
&& minNumberEvents > 0
&& sum(eset$vital_status == "deceased") < minNumberEvents
|| ncol(eset) < minSampleSize)
{
message(paste("excluding",
"(minNumberEvents or minSampleSize)"))
next
}
if(nrow(eset) < minNumberGenes) {
message(paste("excluding experiment hub dataset",ovarianData[i]$title,"(minNumberGenes)"))
next
}
if(removeRetracted && length(grep("retracted", Biobase::experimentData(eset)@other$warnings$warnings)) > 0){
message(paste("excluding experiment hub dataset",ovarianData[i]$title,"(removeRetracted)"))
next
}
if(removeSubsets && length(grep("subset", Biobase::experimentData(eset)@other$warnings$warnings)) > 0){
message(paste("excluding experiment hub dataset",ovarianData[i]$title,"(removeSubsets)"))
next
}
message(paste("including experiment hub dataset",ovarianData[i]$title))
## featureNames(eset) <- make.names(featureNames(eset)) ##should not do this, it is irreversible.
esets[[i]] <- eset
rm(eset)
}
##optionally take the intersection of genes common to all platforms:
if(keepCommonOnly){
features.per.dataset <- lapply(esets, Biobase::featureNames)
intersect.genes <- intersectMany(features.per.dataset)
esets <- lapply(esets, function(eset){
eset <- eset[intersect.genes, ]
return(eset)
})
}
ids.with.missing.data <- which(vapply(esets, function(X)
sum(!complete.cases(Biobase::exprs(X))) > 0, numeric(1)) == 1)
message(paste("Ids with missing data:", paste(names(ids.with.missing.data),
collapse=", ")))
if (length(ids.with.missing.data) > 0 && imputeMissing) {
for (i in ids.with.missing.data) {
Biobase::exprs(esets[[i]]) = impute::impute.knn(Biobase::exprs(esets[[i]]))$data
}
}
retList = list(esets, duplicates)
names(retList) = c("esets", "duplicates")
return(retList)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.