Nothing
############################################################################
# Function ClusterList() returns two lists containing both significant and #
# nonsignificant clusters, based on the permuted p-value found previously #
# #
# Input Parameters: #
# 1) permuted p-value #
# 2) cluster sizes #
# 3) original k mantel cluster correlations #
# #
# Returns: #
# 1) list of significant clusters (with cluster number, Mantel cluster #
# correlation, cluster size) #
# 2) list of nonsignificant clusters with identical information as in (1) #
# #
# Date: August 12, 2005 #
# written by: Brian Steinmeyer #
############################################################################
## Create and return information for both significant and non-significant
## clusters (based on the critical value), including: cluster number, mantel
## cluster correlation and cluster size
ClusterList <- function(p.val, clus.size, mantel.cors) {
## list the original k Mantel cluster correlations
clust.list <- cbind(as.numeric(names(mantel.cors)), as.numeric(mantel.cors),
as.numeric(clus.size))
## return cluster lists to the user as a data frame with the appropriate
## column headings
clustlist.sig <- as.data.frame(clust.list[abs(clust.list[,2]) >= p.val, , drop=FALSE])
names(clustlist.sig) <- c("significant cluster", "Mantel correlation", "cluster size")
clustlist.nonsig <- as.data.frame(clust.list[abs(clust.list[,2]) < p.val, , drop=FALSE])
names(clustlist.nonsig) <- c("nonsignificant cluster", "Mantel correlation", "cluster size")
return(list(SignificantClusters=clustlist.sig, NonSignificantClusters=clustlist.nonsig))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.