Nothing
## ----loadLibrary-----------------------------------------------------------
library(MTseeker)
## ----loadBams, eval=FALSE--------------------------------------------------
# if (FALSE) {
# # we use SamBlaster... a lot... in my lab.
# # however, this example takes a while even with SamBlaster.
# # it is recorded here for posterity and also "how did you get that result".
# BAMfiles <- grep("(split|disc)", value=T, invert=T, list.files(patt=".bam$"))
# names(BAMfiles) <- sapply(strsplit(BAMfiles, "\\."), `[`, 1)
# BAMs <- data.frame(BAM=BAMfiles,
# Sample_Group=ifelse(grepl("NKS", BAMfiles),
# "normal","tumor"))
# rownames(BAMs) <- sub("NKS", "normal", sub("RO","oncocytoma", rownames(BAMs)))
# BAMs$subject <- as.integer(sapply(strsplit(BAMs$BAM, "(_|\\.)"), `[`, 2))
#
# # we merged all the BAMs after-the-fact, so...
# BAMs <- subset(BAMs, grepl("merged", BAMs$BAM))
# BAMs <- BAMs[order(BAMs$subject), ]
#
# library(parallel)
# options("mc.cores"=detectCores())
# MTreads <- getMT(BAMs, filter=FALSE)
# names(MTreads) <- sapply(strsplit(fileName(MTreads), "\\."), `[`, 1)
# saveRDS(MTreads, file="oncocytoma_and_matched_normal_MTreads.rds")
# }
## ----loadDataLibrary-------------------------------------------------------
library(MTseekerData)
## ----computeCN-------------------------------------------------------------
data(RONKSreads, package="MTseekerData")
mVn <- Summary(RONKSreads)$mitoVsNuclear
names(mVn) <- names(RONKSreads)
CN <- mVn[seq(2,22,2)]/mVn[seq(1,21,2)]
mtCN <- data.frame(subject=names(CN), CN=CN)
library(ggplot2)
library(ggthemes)
p <- ggplot(head(mtCN), aes(x=subject, y=CN, fill=subject)) +
geom_col() + theme_tufte(base_size=24) + ylim(0,4) +
ylab("Tumor/normal mitochondrial ratio") +
ggtitle("Mitochondrial retention in oncocytomas")
print(p)
## ----callVariants, eval=FALSE----------------------------------------------
# if (FALSE) {
# # doing this requires the BAM files
# RONKSvariants <- callMT(RONKSreads)
# # which is why we skip it in the vignette
# save(RONKSvariants, file="RONKSvariants.rda")
# # see ?callMT for a much simpler runnable example
# }
## ----loadVariants----------------------------------------------------------
library(MTseekerData)
data(RONKSvariants, package="MTseekerData")
## ----filterRoVariants------------------------------------------------------
RO <- grep("RO_", names(RONKSvariants))
filtered_RO <- filterMT(RONKSvariants[RO], fpFilter=TRUE, NuMT=TRUE)
RO_recurrent <- subset(granges(filtered_RO),
region == "coding" & rowSums(overlaps) > 1)
## ----filterNksVariants-----------------------------------------------------
NKS <- grep("NKS_", names(RONKSvariants))
filtered_NKS <- filterMT(RONKSvariants[NKS], fpFilter=TRUE, NuMT=TRUE)
NKS_recurrent <- subset(granges(filtered_NKS),
region == "coding" & rowSums(overlaps) > 1)
NKS_gaps <- subset(gaps(NKS_recurrent), strand == "*")
## ----pruneVariants---------------------------------------------------------
RONKSfiltered <- endoapply(filterMT(RONKSvariants), subsetByOverlaps, NKS_gaps)
RONKScoding <- encoding(RONKSfiltered)
## ----plotVariants, eval=FALSE----------------------------------------------
# plot(RONKScoding)
## ----makeSVG---------------------------------------------------------------
data(RONKSvariants, package="MTseekerData")
SVG <- MTseeker::MTcomplex(RONKSvariants[[2]])
## ----makePDF, eval=FALSE---------------------------------------------------
# library(rsvg)
# tmppdf <- paste(tempdir(), "RO_1.functionalAnnot.pdf", sep="/")
# rsvg_pdf(tmppdf)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.