Nothing
## OpenMS output has 10 required format
## however, still need preprocessing
#' @export
OpenMStoMSstatsFormat <- function(input,
annotation=NULL,
useUniquePeptide=TRUE,
fewMeasurements="remove",
removeProtein_with1Feature=FALSE,
summaryforMultipleRows=max){
if (is.null(fewMeasurements)) {
stop('** Please select \'remove\' or \'keep\' for \'fewMeasurements\'.')
}
if (!is.element(fewMeasurements, c('remove', 'keep'))) {
stop('** Please select \'remove\' or \'keep\' for \'fewMeasurements\'.')
}
if (is.null(annotation)) {
if (sum(is.na(input$Condition)) > 0){
stop('** All or partial annotation is missing. Please prepare \'annotation\' as one of input.')
}
} else {
annotinfo <- annotation
}
## Check correct option or input
requiredinput.general <- c("ProteinName", "PeptideSequence", "PrecursorCharge",
"FragmentIon", "ProductCharge", "IsotopeLabelType",
"Condition", "BioReplicate", "Run", "Intensity")
################################
## 1. check general input and use only required columns.
################################
if (!all(requiredinput.general %in% colnames(input))) {
misssing.col <- requiredinput.general[!requiredinput.general %in% colnames(input)]
stop(paste0("** Please check the required input. The required input needs : ",
toString(missing.col)))
} else {
input <- input[, colnames(input) %in% requiredinput.general]
}
## get annotation
if (is.null(annotation)) {
annotinfo <- unique(input[, c("Run", "Condition", 'BioReplicate')])
} else {
## check annotation
required.annotation <- c('Condition', 'BioReplicate', 'Run')
if (!all(required.annotation %in% colnames(annotation))) {
missedAnnotation <- which(!(required.annotation %in% colnames(annotation)))
stop(paste("**", toString(required.annotation[missedAnnotation]),
"is not provided in Annotation. Please check the annotation file."))
} else {
annotinfo <- annotation
}
}
## check annotation information
## get annotation
## Each Run should has unique information about condition and bioreplicate
check.annot <- xtabs(~Run, annotinfo)
if ( any(check.annot > 1) ) {
stop('** Please check annotation. Each MS run can\'t have multiple conditions or BioReplicates.' )
}
##############################
## 2. remove featuares with all na or zero
## some rows have all zero values across all MS runs. They should be removed.
##############################
input$fea <- paste(input$PeptideSequence,
input$PrecursorCharge,
input$FragmentIon,
input$ProductCharge,
sep="_")
inputtmp <- input[!is.na(input$Intensity) & input$Intensity > 1, ]
count <- inputtmp %>% group_by(fea) %>% summarise(length=length(Intensity))
## get feature with all NA or zeros
getfea <- count[count$length > 0, 'fea']
if (nrow(getfea) > 0) {
nfea.remove <- length(unique(input$fea)) - nrow(getfea)
input <- input[which(input$fea %in% getfea$fea), ]
message(paste0('** ', nfea.remove, ' features have all NAs or zero intensity values and are removed.'))
} else {
stop(message('No intensity is available. Please check the input.'))
}
rm(inputtmp)
################################################
## 3. remove peptides which are used in more than one protein
## we assume to use unique peptide
################################################
if (useUniquePeptide) {
pepcount <- unique(input[, c("ProteinName", "PeptideSequence")]) ## Protein.group.IDs or Sequence
pepcount$PeptideSequence <- factor(pepcount$PeptideSequence)
## count how many proteins are assigned for each peptide
structure <- pepcount %>% group_by(PeptideSequence) %>% summarise(length=length(ProteinName))
remove_peptide <- structure[structure$length != 1, ]
## remove the peptides which are used in more than one protein
if (nrow(remove_peptide) != 0) {
input <- input[-which(input$PeptideSequence %in% remove_peptide$PeptideSequence), ]
message('** Peptides, that are used in more than one proteins, are removed.')
} else {
message('** All peptides are unique peptides in proteins.')
}
rm(structure)
rm(remove_peptide)
}
##############################
## 4. remove features which has 1 or 2 measurements across runs
##############################
if (fewMeasurements == "remove") {
## it is the same across experiments. # measurement per feature.
xtmp <- input[!is.na(input$Intensity) & input$Intensity > 0, ]
count_measure <- xtabs( ~fea, xtmp)
remove_feature_name <- count_measure[count_measure < 3]
if (length(remove_feature_name) > 0) {
input <- input[-which(input$fea %in% names(remove_feature_name)), ]
message(paste0('** ', length(remove_feature_name),
' features have 1 or 2 intensities across runs and are removed.'))
}
}
##############################
## 5. remove proteins with only one peptide and charge per protein
##############################
if (removeProtein_with1Feature) {
## remove protein which has only one peptide
tmp <- unique(input[, c("ProteinName", 'fea')])
tmp$ProteinName <- factor(tmp$ProteinName)
count <- xtabs( ~ ProteinName, data=tmp)
lengthtotalprotein <- length(count)
removepro <- names(count[count <= 1])
if (length(removepro) > 0) {
input <- input[-which(input$ProteinName %in% removepro), ]
message(paste0("** ", length(removepro),
' proteins, which have only one feature in a protein, are removed among ',
lengthtotalprotein, ' proteins.'))
} else {
message("** All proteins have at least two features.")
}
}
##############################
## 6. remove multiple measurements per feature and run
##############################
count <- aggregate(Intensity ~ fea, data=input, FUN=length)
## if any feature has more number of total MS runs,
if (any(unique(count$Intensity) > length(unique(input$Run)))) {
## maximum or sum up abundances among intensities for identical features within one run
input_w <- dcast( ProteinName + PeptideSequence + PrecursorCharge + FragmentIon ~ Run, data=input,
value.var='Intensity',
fun.aggregate=summaryforMultipleRows, na.rm=T,
fill='NA')
## reformat for long format
input <- melt(input_w, id=c('ProteinName', 'PeptideSequence', 'PrecursorCharge', 'FragmentIon'))
colnames(input)[which(colnames(input) %in% c('variable','value'))] <- c("Run","Intensity")
message('** Multiple measurements in a feature and a run are summarized by summaryforMultipleRows.')
} else {
## still need to fill incomplete rows
input_w <- dcast( ProteinName + PeptideSequence + PrecursorCharge + FragmentIon + ProductCharge ~ Run, data=input,
value.var='Intensity', na.rm=T,
fill='NA')
## reformat for long format
input <- melt(input_w,
id=c('ProteinName', 'PeptideSequence', 'PrecursorCharge', 'FragmentIon', 'ProductCharge'))
colnames(input)[which(colnames(input) %in% c('variable','value'))] <- c("Run","Intensity")
message('** No multiple measurements in a feature and a run.')
}
##############################
## 10. class of intensity is character, change it as numeric
##############################
input$Intensity <- as.numeric(input$Intensity)
##############################
## 11. merge annotation
##############################
input <- merge(input, annotinfo, by='Run', all=TRUE)
## fill in extra columns
input.final <- data.frame("ProteinName" = input$ProteinName,
"PeptideSequence" = input$PeptideSequence,
"PrecursorCharge" = input$PrecursorCharge,
"FragmentIon" = input$FragmentIon,
"ProductCharge" = input$ProductCharge,
"IsotopeLabelType" = "L",
"Condition" = input$Condition,
"BioReplicate" = input$BioReplicate,
"Run" = input$Run,
"Intensity" = input$Intensity)
input <- input.final
input$ProteinName <- factor(input$ProteinName)
rm(input.final)
return(input)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.