Nothing
#' @include AllGeneric.R
#' @importFrom rlang .data
NULL
#' @rdname Generics
#' @noRd
setMethod("initialize", signature="MOSimulator", function(.Object, ...) {
.Object <- callNextMethod(.Object, ...)
# Casting to dataframe
.Object@idToGene <- as.data.frame(.Object@idToGene, stringsAsFactors = FALSE)
.Object@data <- as.data.frame(.Object@data, stringsAsFactors = FALSE)
# Convert data frames to characters or numbers
.Object@idToGene[] <- lapply(.Object@idToGene, as.character)
.Object@data[] <- lapply(.Object@data, as.numeric)
return(.Object)
})
#' initializeData
#'
#' Generates the initial sample of data. It copies the initial data for every
#' group of the experimental design, and ensures to change the count values
#' for those genes (and associated regulators with an active effect on it)
#' that are marked as DE with only flat profiles in all groups.
#'
#' @param object Instance of \linkS4class{MOSimulator} class.
#' @param simulation Initialized instance of \linkS4class{MOSimulation} class
#'
#' @return An object of class \linkS4class{MOSimulator} with the @data slot filled
#' with the correct initial data structure and values.
#' @keywords internal
#' @rdname Generics
#' @noRd
#'
setMethod("initializeData", signature="MOSimulator", function(object, simulation) {
# Adjust sequencing depth
object@depth <- object@depth*10^6
if (! is.declared(object@data)) {
stop(sprintf("Data not declared on simulator %s.", object@name))
}
# Adjust counts to depth
object@data$Counts <- object@depth * object@data$Counts / sum(object@data$Counts)
# Set min/max values based on provided data
object@min <- min(object@data)
object@max <- max(object@data)
nonzero.org.counts <- object@data[object@data > 0]
no.outliers.counts <- object@data[object@data < stats::quantile(object@data$Counts, c(0.99))]
min.value.nonzero <- stats::quantile(nonzero.org.counts, simulation@minMaxQuantile[1])
dataPerc <- stats::quantile(nonzero.org.counts, object@minMaxQuantile)
range.no.outliers <- range(no.outliers.counts)
minDE.value <- stats::quantile(nonzero.org.counts, c(simulation@minMaxQuantile[1]))
maxDE.value <- stats::quantile(nonzero.org.counts, c(simulation@minMaxQuantile[2]))
maxDE.value <- max(no.outliers.counts)
# TODO: this might fail when data does have more than one column (pregenerated?)
object@minMaxDist <- list(
"min" = dataPerc[1],
"max" = dataPerc[2],
"minDE" = minDE.value,
"maxDE" = maxDE.value,
"minValue" = min.value.nonzero
)
# Generate a random counts series
omicSettings <- simulation@simSettings$geneProfiles[[class(object)]]
featureSamples <- simulation@simSettings$featureSamples[[class(object)]]
featuresDE <- featureSamples$DE
features.Flat <- simulation@simSettings$geneProfiles$FlatGroups[[class(object)]]$ID
featuresDE.notFlat <- setdiff(featuresDE, features.Flat)
featuresNONDE <- featureSamples$nonDE
featuresNonDE.noised <- featureSamples$noiseNonDE
featuresNONDE.diff <- setdiff(featuresNONDE, featuresNonDE.noised)
object@randData <- sample(object@data$Counts)
names(object@randData) <- rownames(object@data)
# Adjust randomCounts to depth
# object@randData <- object@depth * object@randData / sum(object@randData)
swapCountValues <- function(countVector, idsToChange, idsNonDE, meanValue, operation = NULL) {
# Select non-DE IDs to swap. Select the maximum amount available
swapID <- sample(as.character(idsNonDE),
size = min(length(idsToChange), length(idsNonDE)),
replace = FALSE)
# Take a sample to replace
swapID.bad <- sample(as.character(idsToChange),
size = length(swapID),
replace = FALSE)
# Good values to use
swapValues <- countVector[swapID]
# Set bad values into the Non-DE features
countVector[swapID] <- countVector[swapID.bad]
# Assign good values to DE features
countVector[swapID.bad] <- swapValues
# In case any value has not been changed due to
# not having enough replacement values, use random distribution.
remainingIds <- setdiff(idsToChange, swapID.bad)
if (length(remainingIds)) {
countVector[remainingIds] <- stats::rnorm(n = length(remainingIds),
mean = meanValue,
sd = 1)
}
return(countVector)
}
swapCountValuesDiff <- function(countVector, initialVector, idsToChange, nonDEIds, limitMax, limitMin, limit, absMaxLimit, absMinLimit) {
if (length(idsToChange)) {
minorCounts <- setNames(pmin(initialVector[idsToChange], countVector[idsToChange]),
idsToChange)
majorCounts <- setNames(pmax(initialVector[idsToChange], countVector[idsToChange]),
idsToChange)
diffMask <- (countVector[idsToChange] > initialVector[idsToChange])
diffCounts <- setNames(majorCounts - minorCounts, idsToChange)
limitCriteria.min <- setNames(minorCounts * limitMin, idsToChange)
limitCriteria.max <- setNames(minorCounts * limitMax, idsToChange)
vectorToChange <- ifelse(diffMask, 'countVector', 'initialVector')
limitSelValue <- if (limit == 'max') limitMax else limitMin
diffToLimit <- setNames(minorCounts * limitSelValue - majorCounts, idsToChange)
# Order the ids for the more restrictive (lower range) to the most.
idsToChange <- idsToChange[order(limitCriteria.max - limitCriteria.min)]
# Repeat the process for each feature, as the pool will change with every situation.
for (featureID in idsToChange) {
minValue <- limitCriteria.min[featureID]
maxValue <- limitCriteria.max[featureID]
vectorVariable <- get(vectorToChange[featureID])
matchIds <- names(vectorVariable)[vectorVariable >= minValue & vectorVariable <= maxValue]
availableIds <- intersect(matchIds, nonDEIds)
if (length(availableIds)) {
swapID <- sample(availableIds, size = 1)
swap.Value <- vectorVariable[swapID]
feature.Value <- vectorVariable[featureID]
vectorVariable[featureID] <- swap.Value
vectorVariable[swapID] <- feature.Value
} else {
# If no match has been found, generate a new random value.
newValue <- min(max(stats::runif(1,
min = minValue,
max = maxValue), absMinLimit), absMaxLimit)
vectorVariable[featureID] <- newValue
}
# As no pointers exist in R, replace original vector value with the new modified one.
assign(vectorToChange[featureID], vectorVariable)
}
}
outputList <- list(
'data' = initialVector,
'randData' = countVector
)
return(outputList)
}
# Determine which DE non-flat genes have been assigned a non-expressed status AND have an original
# value lower than that, then swap their values with non-DE genes
minDEassignments.rand <- names(object@randData)[object@randData < minDE.value] # Keep IDS from randomCounts separate
minDEassignments.org <- rownames(object@data)[object@data$Counts < minDE.value]
badAssignmentDE.min.org <- intersect(featuresDE, minDEassignments.org)
availableIdsNONDE.rand <- setdiff(featuresNONDE, minDEassignments.rand)
availableIdsNONDE.min.org <- setdiff(featuresNONDE.diff, minDEassignments.org)
# First check: make sure they have a minimum value
object@data[] <- swapCountValues(setNames(object@data$Counts, rownames(object@data)),
badAssignmentDE.min.org,
availableIdsNONDE.min.org,
minDE.value)
maxDEassignments.org <- rownames(object@data)[object@data$Counts > maxDE.value]
badAssignmentDE.max.org <- intersect(featuresDE, maxDEassignments.org)
availableIds <- names(object@data)[object@data < maxDE.value & object@data > minDE.value]
availableIdsNONDE.max.org <- intersect(featuresNONDE.diff, availableIds)
object@data[] <- swapCountValues(setNames(object@data$Counts, rownames(object@data)),
badAssignmentDE.max.org,
availableIdsNONDE.max.org,
maxDE.value)
# TODO: remove this temp mod
index.DE <- names(object@randData) %in% featuresDE.notFlat
index.noised <- names(object@randData) %in% featuresNonDE.noised
minNoiseValue <- 100
noisedMin.org <- rownames(object@data)[object@data$Counts < minNoiseValue]
noisedMin.rand <- names(object@randData)[object@randData < minNoiseValue]
badAssignmentNoiseNonDE.min.org <- intersect(featuresNonDE.noised, noisedMin.org)
badAssignmentNoiseNonDE.min.rand <- intersect(featuresNonDE.noised, noisedMin.rand)
availableIdsNONDE.min.org <- setdiff(featuresNONDE.diff, noisedMin.org)
availableIdsNONDE.min.rand <- setdiff(featuresNONDE.diff, noisedMin.rand)
object@data[] <- swapCountValues(setNames(object@data$Counts, rownames(object@data)),
badAssignmentNoiseNonDE.min.org,
availableIdsNONDE.min.org,
minNoiseValue)
object@randData[] <- swapCountValues(object@randData,
badAssignmentNoiseNonDE.min.rand,
availableIdsNONDE.min.rand,
minNoiseValue)
minDEassignments.rand <- names(object@randData)[object@randData < minDE.value]
badAssignmentDE.min.rand <- intersect(featuresDE, minDEassignments.rand)
badAssignmentNoiseNonDE.min.rand <- intersect(featuresNonDE.noised, minDEassignments.rand)
availableIdsNONDE.min.rand <- setdiff(featuresNONDE.diff, minDEassignments.rand)
object@randData[] <- swapCountValues(object@randData,
badAssignmentDE.min.rand,
availableIdsNONDE.min.rand,
minDE.value)
maxDEassignments.rand <- names(object@randData)[object@randData > maxDE.value]
badAssignmentDE.max.rand <- intersect(featuresDE, maxDEassignments.rand)
availableIds <- names(object@randData)[object@randData < maxDE.value & object@randData > minDE.value]
availableIdsNONDE.max.rand <- intersect(featuresNONDE.diff, availableIds)
object@randData[] <- swapCountValues(object@randData,
badAssignmentDE.max.rand,
availableIdsNONDE.max.rand,
maxDE.value)
retrieveDiffIndex <- function(instance, multiplier) {
random.M <- pmax(instance@randData, instance@data$Counts)
random.m <- pmin(instance@randData, instance@data$Counts)
diff.out <- (random.M > random.m * multiplier)
return(diff.out)
}
# Maximum difference between M and m
min.diff <- object@minMaxFC[1]
max.diff <- object@minMaxFC[2]
index.match.maxdiff.available <- retrieveDiffIndex(object, max.diff)
index.match.maxdiff <- (index.match.maxdiff.available & index.DE)
# Swap values with others to meet the constraints at the time we maintain a similar distribution
# of the initial sample.
# Ids to change
badAssignmentDE.rand.maxdiff <- names(object@randData)[index.match.maxdiff]
# Pool of available ids to meet the condition.
availableIdsNONDE.maxdiff.rand <- setdiff(featuresNONDE.diff, names(index.match.maxdiff.available))
correctedCounts <- swapCountValuesDiff(object@randData,
setNames(object@data$Counts, rownames(object@data)),
badAssignmentDE.rand.maxdiff,
featuresNONDE.diff,
max.diff,
min.diff,
'max',
maxDE.value,
minDE.value
)
object@data[] <- correctedCounts$data
object@randData <- correctedCounts$randData
# Repeat the process with minimum diffs
index.match.mindiff.available <- ! (retrieveDiffIndex(object, min.diff))
index.min.match <- (index.match.mindiff.available & index.DE)
badAssignmentDE.rand.mindiff <- names(object@randData)[index.min.match]
availableIdsNONDE.mindiff.rand <- setdiff(featuresNONDE.diff, names(index.match.mindiff.available))
correctedCounts <- swapCountValuesDiff(object@randData,
setNames(object@data$Counts, rownames(object@data)),
badAssignmentDE.rand.mindiff,
featuresNONDE.diff,
max.diff,
min.diff,
'min',
maxDE.value,
minDE.value)
object@data[] <- correctedCounts$data
object@randData <- correctedCounts$randData
# MIN/MAX FOR NOISED NON-DEG
max.diff.noised <- 1.1
min.diff.noised <- 1.1
index.match.maxdiff.available.noised <- retrieveDiffIndex(object, max.diff.noised)
index.max.match.noised <- (index.match.maxdiff.available.noised & index.noised)
badAssignmentDE.rand.maxdiff.noised <- names(object@randData)[index.max.match.noised]
availableIdsNONDE.maxdiff.rand.noised <- setdiff(featuresNONDE.diff, names(badAssignmentDE.rand.maxdiff.noised))
correctedCounts <- swapCountValuesDiff(object@randData,
setNames(object@data$Counts, rownames(object@data)),
badAssignmentDE.rand.maxdiff.noised,
setdiff(featuresNONDE.diff, featuresNonDE.noised),
max.diff.noised,
min.diff.noised,
'max',
maxDE.value,
minNoiseValue)
object@data[] <- correctedCounts$data
object@randData <- correctedCounts$randData
# Clone the base counts for every group
if (ncol(object@data) < simulation@numberGroups) {
object@data <- object@data[, rep.int(1, simulation@numberGroups), drop = FALSE]
}
# Important: column names pattern "Counts.Group" is required .
colnames(object@data) <- paste('Counts.Group', seq(simulation@numberGroups))
if (! is.null(flatProfiles <- simulation@simSettings$geneProfiles$FlatGroups$SimRNAseq)) {
# Structure: Gene_ID | Group_1 | ... | Group_N
# onlyFlat <- (length(simulation@times) > 1)
# Count range to exclude comparing with the reference (group 1)
excludeMargin <- 10
# Match positions
flatIndexes <- match(flatProfiles$ID, rownames(object@data))
# Different treatments between RNA-seq and the rest of simulators
if ( ! object@regulator) {
# Profiles + Counts
profileCounts <- cbind(flatProfiles, object@data[flatIndexes, ])
profileColumns <- dplyr::starts_with("Group", vars = colnames(profileCounts))
countColumns <- dplyr::starts_with("Counts.Group", vars = colnames(profileCounts))
# Iterate over the rows on a unique matrix with the structure:
# Gene_ID | Profile_Group_1 | ... | Counts_Group_1 | ...
object@data[flatIndexes, ] <- t(apply(profileCounts, 1, function(idRow) {
# Types of profiles (exclude first column)
idProfiles <- as.character(idRow[profileColumns])
# Count values (columns after profiles)
idCounts <- as.numeric(idRow[countColumns])
min.flat.value.enhancer <- idCounts[1] * object@minMaxFC[1]
max.flat.value.enhancer <- idCounts[1] * object@minMaxFC[2]
min.flat.value.repressor <- idCounts[1] / object@minMaxFC[2]
max.flat.value.repressor <- idCounts[1] / object@minMaxFC[1]
# Profiles
tmpCounts <- ifelse(idProfiles == 'flat',
# If the profile is flat, keep the current value
idCounts,
ifelse(idProfiles == 'enhancer',
# If the profile is enhancer, generate a new count value in the range
# (actual_value + excludeMargin) to maxValue
rep.int(stats::runif(1,
min = min(min.flat.value.enhancer, object@max),
max = min(max.flat.value.enhancer, object@max)),
simulation@numberGroups),
# If the profile is repressor, generate a new count value in the range
# minValue to (actual_value - excludeMargin)
rep.int(stats::runif(1,
min = max(min.flat.value.repressor, object@min),
max = max(max.flat.value.repressor, object@min)),
simulation@numberGroups)
)
)
# Check the differences
# referenceGroup <- head(tmpCounts[idProfiles == 'flat'], 1)
# diffValues <- abs(tmpCounts - referenceGroup)
#
# # For enhancer there shouldn't be any problem
# invalidDiffs <- (diffValues < min.diff.flat) & (idProfiles == 'repressor')
#
# if (any(invalidDiffs)) {
# # Calculate the amount to increase the reference group
# diffRange <- min.diff.flat - min(diffValues)
#
# tmpCounts[idProfiles == 'flat'] <- tmpCounts[idProfiles == 'flat'] + diffRange
# }
return(tmpCounts)
}))
} else {
# In case of regulators, the initial value will depend on the effect
# on the associated gene.
profileSubset <- dplyr::rename(flatProfiles, Gene = .data$ID) %>%
dplyr::inner_join(simulation@simSettings$geneProfiles[[class(object)]][, c('ID', 'Effect', 'Gene')], by = c("Gene" = "Gene")) %>%
dplyr::select(.data$ID, .data$Effect, dplyr::starts_with("Group")) %>%
dplyr::filter(! is.na(.data$Effect))
# TODO: change object@data with object@randData?
if (nrow(profileSubset)) {
# CAREFUL: the counts value NEED to have the same amount as columns as number of groups, otherwise a NA
# will be returned hence assigning the maximum value.
# Profiles + Counts
profileCounts <- cbind(profileSubset, object@data[profileSubset$ID, ])
effectColumn <- dplyr::matches("Effect", vars = colnames(profileCounts))
profileColumns <- dplyr::starts_with("Group", vars = colnames(profileCounts))
countColumns <- dplyr::starts_with("Counts.Group", vars = colnames(profileCounts))
object@data[profileSubset$ID, ] <- t(apply(profileCounts, 1, function(idRow) {
# Regulator effect
regEffect <- idRow[effectColumn]
# Types of profiles (skip first 2 columns: ID and Effect)
idProfiles <- as.character(idRow[profileColumns])
# Count values (following columns)
idCounts <- as.numeric(idRow[countColumns])
min.flat.value.enhancer <- idCounts[1] * 3
max.flat.value.enhancer <- idCounts[1] * 10
min.flat.value.repressor <- idCounts[1] / 10
max.flat.value.repressor <- idCounts[1] / 3
# Profiles
# TODO: change to use randData
return(ifelse(idProfiles == 'flat',
# If the profile is flat, keep the current value
idCounts,
# If the regulator effect is enhancer, keep the same behaviour,
# if not, assign the opposite.
ifelse(idProfiles == regEffect,
# If the profile is enhancer, generate a new count value in the range
# (actual_value + excludeMargin) to maxValue
rep.int(stats::runif(1,
min = min(min.flat.value.enhancer, object@max),
max = min(max.flat.value.enhancer, object@max)),
simulation@numberGroups),
# If the profile is repressor, generate a new count value in the range
# minValue to (actual_value - excludeMargin)
rep.int(stats::runif(1,
min = max(min.flat.value.repressor, object@min),
max = max(max.flat.value.repressor, object@min)),
simulation@numberGroups)
)
))
}))
}
}
# Adjust again to depth for each column
object@data <- apply(object@data, 2, function(x) x * object@depth / sum(x))
object@randData <- object@randData * object@depth / sum(object@randData)
# Replace with a mean value between the groups
object@data[featuresNONDE, ] <- apply(object@data[featuresNONDE, , drop = FALSE], 1, mean)
}
return(object)
})
#' @rdname Generics
#' @keywords internal
#' @noRd
setMethod("simulate", signature="MOSimulator", function(object, simulation) {
message(sprintf("Starting simulation of %s.", object@name))
object <- initializeData(object, simulation)
makeReplicates <- function(counts, groupInfo, timeInfo, profileInfo, verbose = TRUE) {
if (verbose) {
message(sprintf("\t- Making replicates for group %d on time %s.", groupInfo, timeInfo))
}
counts[is.na(counts) | counts < 0.1] <- 0.1
varest <- 10^object@replicateParams$a * (counts + 1)^object@replicateParams$b - 1
# Force a minimum variance
varest[varest < 0.03] <- 0.03
# Apply to every row:
# Param x: [mu.noise.cpm, stdev]
temp <- t(matrix(apply(cbind(counts, varest), 1, function (x) {
if (x[1] >= x[2]) {
replis <- stats::rpois(n = simulation@numberReps, lambda = x[1])
} else {
replis <- stats::rnbinom(n = simulation@numberReps, size = x[1]^2/(x[2] - x[1]), mu = x[1])
}
return(replis)
}), nrow = simulation@numberReps))
flatProfiles <- which(profileInfo == 'flat')
# Disabled: adjusting to specified depth
# temp.depth <- apply(temp, 2, function(x) x * object@depth / sum(x))
temp.depth <- temp
# Generate random means
noised.means.rand <- stats::rnorm(n = length(counts),
mean = counts,
sd = 0.025 * counts)
# For induction profiles, select the minimum value
noised.means <- ifelse(grepl("induction", profileInfo),
pmin(counts, noised.means.rand),
pmax(counts, noised.means.rand)
)
# Override for flat profiles with a less variable noise
if (length(flatProfiles)) {
noised.means[flatProfiles] <- stats::rnorm(n = length(flatProfiles),
mean = counts[flatProfiles],
sd = 0.01 * counts[flatProfiles])
}
# Note: assign as [] to maintain structure, as apply will return a matrix or a vector depending
# on the number of replicates of the simulation.
temp.depth[] <- t(apply(cbind(noised.means, temp.depth), 1,
function(geneRow) {
# Original replicate values
mean.adjusted <- geneRow[1]
gene.values <- geneRow[-1]
# Mean
diff.mean <- mean(gene.values) - mean.adjusted
gene.adjusted <- gene.values - diff.mean
return(gene.adjusted)
}))
return(temp.depth)
}
# Profile table of simulator
simProfiles <- simulation@simSettings$geneProfiles[[class(object)]]
# Flat DE genes
flatProfiles <- simulation@simSettings$geneProfiles$FlatGroups[[class(object)]] #$SimRNAseq
# Select only the active rows of the regulator profile table, discarding
# the duplicated rows (all active rows for a given regulator will have the
# same profile among groups by now).
if (object@regulator) {
# If the object is pregenerated (e.g. methylation) then keep the profiles
# as they are.
if (object@pregenerated) {
simProfiles <- dplyr::select(simProfiles, .data$ID, dplyr::starts_with("Group"), dplyr::starts_with("Tmax")) %>%
dplyr::distinct_()
} else {
simProfiles <- dplyr::filter(simProfiles, ! is.na(.data$Effect)) %>%
dplyr::select(.data$ID, dplyr::starts_with("Group"), dplyr::starts_with("Tmax")) %>%
dplyr::distinct_()
# Add remaining IDs present on data with a flat profile
simProfiles <- rbind(simProfiles, do.call(cbind, setNames(append(
# ID
list(rownames(object@data)[! rownames(object@data) %in% as.character(simProfiles$ID)]),
# Groups
append(rep('flat', simulation@numberGroups), rep(NA, simulation@numberGroups)) # Group & Tmax columns
), colnames(simProfiles))))
}
}
# Filtering step
simProfiles <- dplyr::filter(simProfiles, .data$ID %in% rownames(object@data))
if (object@pregenerated) {
# TODO: fix this in other place. When working with blocks, sometimes there are duplicated rows
# because they do not have the tmax columns properly filled.
simProfiles <- dplyr::group_by(simProfiles, .data$ID) %>%
dplyr::summarise_all(list(~dplyr::first(stats::na.omit(.)))) %>%
dplyr::ungroup()
}
# If data is already generated (i.e. methylation simulator) skip some
# steps like generating random counts or replicates, adjusting also the
# parameters for mapply.
# Pass only "group" columns
columnsParam <- dplyr::select(simProfiles, dplyr::starts_with("Group"))
# Pass only "tmax" columns
tmaxParam <- dplyr::select(simProfiles, dplyr::starts_with("Tmax."))
# Keep track of iteration
iterationParam <- seq(simulation@numberGroups)
# Pass IDs
idsParam <- simProfiles[, rep('ID', simulation@numberGroups), drop = FALSE]
if (object@pregenerated) {
# Repeat for every replicate
columnsParam <- columnsParam[, rep(colnames(columnsParam), each = simulation@numberReps), drop = FALSE]
iterationParam <- rep(iterationParam, each = simulation@numberReps)
idsParam <- simProfiles[, rep('ID', simulation@numberGroups * simulation@numberReps), drop = FALSE]
tmaxParam <- tmaxParam[, rep(colnames(tmaxParam), each = simulation@numberReps), drop = FALSE]
}
simulatedParams <- setNames(mapply(function(counts, profiles, group, ids) {
simulateParams(object, simulation, counts, profiles, group, ids)
},
data.frame(object@data[as.character(simProfiles$ID), , drop = FALSE], stringsAsFactors = FALSE),
columnsParam,
iterationParam,
idsParam,
USE.NAMES = TRUE,
SIMPLIFY = FALSE
), paste0("Group", seq_len(simulation@numberGroups)))
features2Groups <- c()
# Genes flat in one group but not the other
if (simulation@numberGroups > 1) {
# Check if at least one gene has a flat profile in one group
features2Groups <- dplyr::select(simProfiles, dplyr::starts_with("Group")) %>%
purrr::map(`==`, 'flat') %>%
purrr::pmap_int(any)
# Exclude those with 'flat' in all profiles
flatIndexes <- simProfiles$ID %in% flatProfiles$ID
features2Groups <- simProfiles[features2Groups & ! flatIndexes, 'ID', drop = TRUE]
# dplyr::select(profilesDE, dplyr::starts_with("Group")) %>% purrr::pmap(., function(...) {
# geneProfiles <- list(...)
#
# return(any(geneProfiles == 'flat'))
# })
}
if (simulation@numberReps > 1) {
nonDE.selected <- simulation@simSettings$featureSamples[[class(object)]]$noiseNonDE
# Disabled: chose totally opposite profiles for noise genes.
#
# sampleProfiles <- function(featureID) {
# profileOptions <- names(simulation@profileProbs)
# profileTypes <- c("transitory", "continuous")
#
# sampleTypes <- sample(profileTypes, size = floor(simulation@numberReps/2), replace = TRUE)
#
# chosenOptions <- unlist(lapply(sampleTypes, function(typeName) profileOptions[grep(typeName, profileOptions)]))
#
# # For an odd number of replicates, add a final flat profile
# if (simulation@numberReps %% 2 != 0) {
# chosenOptions <- c(chosenOptions, "flat")
# }
#
# return(chosenOptions)
# }
profileOptions <- names(simulation@profileProbs)[-grep("flat", names(simulation@profileProbs))]
replacement <- (simulation@numberReps > length(profileOptions))
repProfiles <- do.call(rbind,
replicate(n = length(nonDE.selected),
sample(profileOptions, size = simulation@numberReps, replace = replacement),
simplify = FALSE))
# repProfiles <- do.call(rbind, lapply(nonDE.selected, sampleProfiles))
tmax.T <- length(simulation@times) - 1
repTmax <- matrix(rep(stats::runif(length(nonDE.selected), min = 0.25 * tmax.T, max = 0.75 * tmax.T),
times = simulation@numberReps,
simplify = FALSE), ncol = simulation@numberReps)
}
# Generate time series (if any) with replicates
object@simData <- data.frame(
mapply(
function(simulateParams, profiles, tmaxValues, group, ids) {
if (! object@pregenerated) {
message(sprintf("- Simulating count values for group %d.", group))
} else {
message(sprintf("[Pregenerated replicate] Simulating count values for group %d.", group))
}
# Create the coefficients based on the "tmax" parameter
nt <- length(simulation@times)
x <- c(0:(nt - 1))
varT <- x[nt]
calculateTimeVectors <- function(localProfiles, localTmaxvalues) {
t(apply(cbind(localProfiles, localTmaxvalues), 1, function(rowInfo) {
# Set in the current scope the proper values
profileValue <- rowInfo[1]
tmaxValue <- as.numeric(rowInfo[2])
data_values <- list(
"0" = 0,
a1 = 0,
a2 = 0,
a2.neg = 0,
b1 = 1 / x[nt],
b1.neg = -1 / x[nt],
b2 = 4 * (x[nt]) / (x[nt] * x[nt]),
b2.neg = -4 * (x[nt]) / (x[nt] * x[nt]),
c2 = -4 / (x[nt] * x[nt]),
c2.neg = 4 / (x[nt] * x[nt])
)
# If tmaxValue is set, the profile is transitory: override variables
if (! is.na(tmaxValue)) {
if (tmaxValue >= varT/2) {
data_values$b2 <- 2 / tmaxValue
data_values$c2 <- - 1 /tmaxValue^2
} else {
data_values$c2 <- - 1 /(varT - tmaxValue)^2
data_values$a2 <- 1 + (data_values$c2) * tmaxValue^2
data_values$b2 <- - 2 * (data_values$c2) * tmaxValue
}
data_values$a2.neg <- - data_values$a2
data_values$b2.neg <- - data_values$b2
data_values$c2.neg <- - data_values$c2
}
return(unlist(data_values[as.character(simulation@profiles[[profileValue]])]))
})) %*% rbind(c(rep(1, nt)), x, x * x)
}
generateCountsProfiles <- function(timeVectors, profiles, indexID, applyCorrection=TRUE, verbose=TRUE) {
# Generate base counts using the formulas:
# X = initial_counts + noise [for flat]
# X = m + lambda(M - m) + noise [for lambda in [0,1]]
# X = M + lambda(M - m) + noise [for lambda in [-1,0]]
# Delegate creation of specific simulation parameters
counts <- simulateParams$counts[indexID]
randomCounts <- simulateParams$randomCounts[indexID]
noiseValues <- simulateParams$noiseValues[indexID]
M <- simulateParams$M[indexID]
m <- simulateParams$m[indexID]
repressionMean <- simulateParams$repression.Mean[indexID]
inductionMean <- simulateParams$induction.Mean[indexID]
# Rows with flat profile
indexFlat <- which(profiles == "flat")
diffRepression <- repressionMean - m
diffInduction <- M - inductionMean
if (! object@pregenerated) {
simData <-
ifelse(grepl('repression', profiles, fixed = TRUE),
repressionMean,
inductionMean) +
# ((M - m) * timeVectors) +
ifelse(grepl('repression', profiles, fixed = TRUE),
diffRepression,
diffInduction) * timeVectors +
noiseValues
} else {
# For methylation, avoid using means so that we can replicate the plot showing
# a maximum in 0 and 1 values
simData <-
ifelse(grepl('repression', profiles, fixed = TRUE), M, m) +
((M - m) * timeVectors) +
noiseValues
}
# Overwrite flat rows with the correct value
otherGroup.mean <- purrr::pmap_dbl(lapply(grep(paste0("Group", group), names(simulatedParams), invert = TRUE), function(otherGroup) {
simulatedParams[[otherGroup]]$mean.counts[indexID]
}), mean)
if (length(indexFlat)) {
simData[indexFlat, ] <- ifelse(ids[indexID][indexFlat] %in% flatProfiles$ID,
counts[indexFlat],
# Reduce differentes between groups
ifelse(ids[indexID][indexFlat] %in% features2Groups,
otherGroup.mean[indexFlat],
randomCounts[indexFlat]))
+ noiseValues[indexFlat]
}
# Some genes might have negative values due to the way the time profile formula is applied.
# For DEG, we correct these as to manually increase the amount in all time profiles to avoid this, increasing it
# to a minimum value.
if (applyCorrection && ! object@pregenerated) {
minimumDEGvalue <- object@minMaxDist$minDE
# Apply the correction to transitory profiles only
rowsToCheck <- grep("transitory", profiles)
if (length(rowsToCheck)) {
simData[rowsToCheck, ] <- t(apply(simData[rowsToCheck, , drop = FALSE], 1, function(rowValues) {
if (min(rowValues) < 0 ) {
increaseAmount <- minimumDEGvalue - min(rowValues)
correctedValues <- rowValues + increaseAmount
return(correctedValues)
}
return(rowValues)
}))
}
}
# If the object is flagged as pregenerated it should already have the
# replicates (i.e. methyl seek), so skip this step.
if (! object@pregenerated) {
simData <-
mapply(
makeReplicates,
counts = as.data.frame(simData, stringsAsFactors = FALSE),
groupInfo = group,
timeInfo = simulation@times,
profileInfo = as.data.frame(profiles)[, rep(1, length(simulation@times)),drop=FALSE],
verbose = verbose,
SIMPLIFY = FALSE,
USE.NAMES = FALSE
)
}
return(simData)
}
globalTimeVectors <- calculateTimeVectors(profiles, tmaxValues)
simData <- generateCountsProfiles(globalTimeVectors, profiles, seq_along(ids))
if (simulation@numberReps > 1 && ! object@pregenerated) {
ids.positions <- match(nonDE.selected, ids)
for (repNum in seq(from = 1, to = simulation@numberReps)) {
customTimeVectors <- calculateTimeVectors(repProfiles[, repNum],
repTmax[, repNum])
customSimdata <- generateCountsProfiles(customTimeVectors,
repProfiles[, repNum],
ids.positions,
applyCorrection = FALSE,
verbose = FALSE)
# Replace replicates in already simulated data
for (timePoint in seq_len(ncol(customTimeVectors))) {
simData[[timePoint]][ids.positions, repNum] <- customSimdata[[timePoint]][, repNum]
}
}
}
return(simData)
},
# Count column for each group in the correct order
simulatedParams,
# Pass only "group" columns
columnsParam,
# Coefficients parameters
tmaxParam,
# Keep track of iteration
iterationParam,
# Pass the row IDs
idsParam,
SIMPLIFY = FALSE
), row.names = simProfiles$ID, stringsAsFactors = FALSE)
# Ensure that the columns have the proper pattern "Counts.GroupX"
colsPerGroup <- length(simulation@times) * simulation@numberReps
colnames(object@simData) <- paste0("Counts.Group.",
rep(seq(simulation@numberGroups), each = colsPerGroup),
".", seq(colsPerGroup))
# Final modifications (if required)
object <- postSimulation(object, simulation)
return(object)
})
#' postSimulation
#'
#' Method to make final modifications required by the different omics. Like rounding
#' the final count values or renaming columns for making them more human-readable.
#'
#' For internal use only.
#'
#' @param object Instance of class \linkS4class{MOSimulator}.
#' @param simulation Instance of class \linkS4class{MOSimulation}.
#'
#' @return Object of class \linkS4class{MOSimulation} with the simulated data (@simData)
#' correctly formatted.
#' @keywords internal
#' @rdname Generics
#' @noRd
#'
setMethod("postSimulation", signature="MOSimulator", function(object, simulation) {
if (ncol(object@simData) < simulation@numberGroups * simulation@numberReps * length(simulation@times))
stop("Invalid number of columns after simulation. Please, contact package maintainer!")
# Change number of columns with pattern "Counts.Group"
# GroupX.TimeY.RepN
colnames(object@simData)[grep("Counts.Group", colnames(object@simData))] <-
paste0(
"Group",
rep(
seq_len(simulation@numberGroups),
each = length(simulation@times) * simulation@numberReps
),
".Time",
rep(simulation@times,
each = simulation@numberReps),
".Rep",
seq_len(simulation@numberReps)
)
if (! object@pregenerated) {
object@simData[object@simData < object@min] <- object@min
object@simData[object@simData > object@max] <- object@max
}
# Before adjusting to depth, we include a "dummy" feature that would adjust
# the sum of each column to be the same, so as to maintain the profiles on
# the genes that matter.
diffToMax <- max(colSums(object@simData)) - colSums(object@simData)
object@simData <- data.frame(mapply(function(simuCol, diffCol) {
# First rescale the column
rescaledColDifferences <- simuCol * diffCol / sum(simuCol)
rescaledCol <- simuCol + rescaledColDifferences
return(rescaledCol)
}, as.data.frame(object@simData), diffToMax, SIMPLIFY = FALSE),
row.names = rownames(object@simData),
stringsAsFactors = FALSE)
# Adjust to simulated depth
object@simData <- apply(object@simData, 2, function(x) x * object@depth / sum(x))
# object@simData <- .Simulator.adjustDepth(object, object@simData)
message("Rounding ", object@name, " count values.")
# Round only counts columns
roundCols <- grep(".Time", colnames(object@simData))
object@simData[, roundCols] <- round(object@simData[, roundCols], digits = object@roundDigits)
return(object)
})
#' IDfromGenes
#'
#' Returns the regulator IDs associated to a particular set of genes identifiers.
#'
#' @param object Instance of class \linkS4class{MOSimulator}.
#' @param geneNames Character vector of the genes to look for in the association table.
#' @param simplify Return only the genes IDs or a table containing both types of identifiers.
#'
#' @return Depending on \emph{simplify} parameter it would be a character vector or a
#' data frame containing columns \emph{ID} and \emph{Gene}.
#' @keywords internal
#' @rdname Generics
#' @noRd
#'
setMethod("IDfromGenes", signature="MOSimulator", function(object, geneNames, simplify = TRUE) {
regTable <- object@idToGene
selCols <- if (simplify) c('ID') else c('ID', 'Gene')
selRows <- regTable[, 'Gene'] %in% geneNames
return(regTable[selRows, selCols])
})
#' IDtoGenes
#'
#' Returns the gene identifiers associated to a particular set of regulator IDs.
#'
#' @param object Instance of class \linkS4class{MOSimulator}.
#' @param idNames Character vector of the regulator IDs to look for in the association table.
#' @param simplify Return only the regulator IDs or a table containing both types of identifiers.
#'
#' @return Depending on \emph{simplify} parameter it would be a character vector or a
#' data frame containing columns \emph{ID} and \emph{Gene}.
#' @keywords internal
#' @rdname Generics
#' @noRd
#'
setMethod("IDtoGenes", signature="MOSimulator", function(object, idNames, simplify = TRUE) {
regTable <- object@idToGene
selCols <- if (simplify) c('ID') else c('ID', 'Gene')
selRows <- regTable[, 'ID'] %in% idNames
return(regTable[selRows, selCols])
})
#' simulateParams
#'
#' For internal use. Creates the values to be replaced in the formulas used
#' to simulate the profile values, including noise.
#'
#' @param object Instance of class \linkS4class{MOSimulator}.
#' @param simulation Instance of class \linkS4class{MOSimulation}.
#' @param counts Counts taken from the initial data.
#' @param profiles Types of profiles to simulate.
#' @param ids IDs associated. Needed in some simulators.
#'
#' @return A list containing the following items:
#' \describe{
#' \item{randomCounts}{numeric vector containing random count values.}
#' \item{noiseValues}{numeric vector containing noise values generated with the noise function and parameters specified.}
#' \item{m}{numeric vector of lower values comparing original and random counts.}
#' \item{M}{numeric vector of maximum values comparing original and random counts.}
#' }
#' @keywords internal
#' @rdname Generics
#' @noRd
#'
setMethod("simulateParams", signature="MOSimulator", function(object, simulation, counts, profiles, group, ids) {
# Reorder random counts
randomCounts <- object@randData[ids]
# Order [m, M]
m <- pmin(counts, randomCounts)
M <- pmax(counts, randomCounts)
# Generate noise values. Different values for each time.
noiseValues <-
replicate(length(simulation@times),
do.call(
object@noiseFunction,
append(list("n" = length(counts)),
object@noiseParams[names(object@noiseParams) != 'NB'])
))
repressionMean <- stats::runif(length(M), min = (M+m)/2, max = M)
inductionMean <- stats::runif(length(m), min = m, max = (M+m)/2)
return(list(
'randomCounts' = randomCounts,
'noiseValues' = noiseValues,
'm' = m,
'M' = M,
'repression.Mean' = repressionMean,
'induction.Mean' = inductionMean,
'mean.counts' = ifelse(grepl('repression', profiles),(repressionMean + m)/2, (inductionMean + M)/2),
'counts' = counts
))
})
#' adjustProfiles
#'
#' For internal use. Allows every omic class to adjust the profiles matrix
#' (simulation settings) to use, according to its needs.
#'
#' @param object Instance of class \linkS4class{MOSimulator}.
#' @param simulation Instance of class \linkS4class{MOSimulation}.
#' @param profiles Data frame containing the profile type associated to each
#' ID.
#' @param step It accepts two options \emph{Effect} and \emph{Groups} depending
#' on the part of the process where this method is called. Check 'Simulation.R'.
#'
#' @return By default it returs the profiles data frame without modifications.
#' @keywords internal
#' @rdname Generics
#' @noRd
#'
setMethod("adjustProfiles", signature="MOSimulator", function(object, simulation, profiles, step) {
# By default return the same
return(profiles)
})
#' @rdname Generics
#' @noRd
setMethod("show", signature="MOSimulator", function(object) {
print(object@simData)
})
#' @rdname Generics
#' @noRd
setMethod("simSettings", signature="MOSimulator", function(object) {
cat(sprintf("Simulation settings of class %s:\n", class(object)))
cat(sprintf("- Depth: %d\n", object@depth))
})
setValidity("MOSimulator", function(object) {
errors <- c()
if (! is.declared(object@data) && ! object@pregenerated)
errors <- c(errors, "Every omic needs to have the initial data set.")
if (object@regulator && ! is.declared(object@idToGene))
errors <- c(errors, "Regulators must provide the association gene list.")
return(if(length(errors)) errors else TRUE)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.