Nothing
#####################
# PACKAGE: stats (formerly mva)
#####################
wrapClust <- function( out, k, height, dis )
{
if (k>0 && height>0)
{
warning("both nclust(k) and height supplied, using nclust")
clinds <- newGroupIndex(cutree(out,k))
}
else if (k > 0 && height == 0)
clinds <- newGroupIndex(cutree(out,k))
else if (k == 0 && height > 0)
clinds <- newGroupIndex(cutree(as.hclust(out),h=height)) else clinds <- NA
clsco <- newSilhouetteVec(cluster::silhouette( clinds, dis )[,3])
return(list(clinds=clinds, clsco=clsco))
}
#
#####################
# title: hclustB
# description: interface to hclust {stats}
# arguments:
# exprObj ExpressionSet
# classifLab character string specifying what covariate data
# to use for classification
# metric for distance matrix
# value:
# object of class "classifPred"
# where sampLabels are the labels of the original sample
# example:
# hOut <- hclustB(golubMerge[100:200,], "ALL.AML")
####################
setGeneric("hclustB", function(exprObj, k, height, method="complete", members, metric="euclidean"){
standardGeneric("hclustB")
})
setMethod("hclustB", c("ExpressionSet", "numeric", "missing", "ANY", "ANY", "ANY"),
function(exprObj, k, height, method, members, metric)
hclustB(exprObj=exprObj, k=k, height=0, method=method ,
members=members, metric=metric))
setMethod("hclustB", c("ExpressionSet", "missing", "numeric", "ANY", "ANY", "ANY"),
function(exprObj, k, height, method, members, metric)
hclustB(exprObj=exprObj, k=0, height=height, method=method ,
members=members, metric=metric))
setMethod("hclustB", c("ExpressionSet", "numeric", "ANY", "ANY", "ANY", "ANY"),
function(exprObj, k, height, method, members, metric){
if(missing(members)){ members <- NULL }
dat <- t(exprs(exprObj))
dis <- dist(dat, method=metric)
out <- stats::hclust(dis, method=method, members=members)
# if (k>0 && height>0)
# {
# warning("both nclust(k) and height supplied, using nclust")
# clinds <- newGroupIndex(cutree(out,k))
# }
# else if (k > 0 && height == 0)
# clinds <- newGroupIndex(cutree(out,k))
# else if (k == 0 && height > 0)
# clinds <- newGroupIndex(cutree(as.hclust(out),h=height)) else clinds <- NA
# clsco <- newSilhouetteVec(cluster::silhouette( clinds, dis )[,3])
tmp <- wrapClust(out, k, height, dis)
new("clustOutput", method="hclust",
RObject=out, call=match.call(),
distMat=dis,
clustIndices=tmp$clinds, clustScores=tmp$clsco)
})
#####################
# title: kmeansB
# description: interface to kmeans {stats}
# arguments:
# exprObj ExpressionSet
# classifLab character string specifying what covariate data
# to use for classification
# metric for distance matrix
# value:
# object of class "classifPred"
# example:
# kOut <- kmeansB(golubMerge[100:200,], "ALL.AML", 2)
####################
setGeneric("kmeansB", function(exprObj, k, iter.max=10, metric="euclidean"){
standardGeneric("kmeansB")
})
setMethod("kmeansB", c("ExpressionSet", "numeric", "ANY", "ANY"),
function(exprObj, k, iter.max, metric){
dat <- t(exprs(exprObj))
dis <- dist(dat, method=metric)
out <- stats::kmeans(dis, centers=k, iter.max=iter.max)
clinds <- newGroupIndex(out$cluster)
clsco <- newSilhouetteVec(cluster::silhouette( clinds, dis )[,3])
new("clustOutput", method="kmeans",
RObject=out, call=match.call(),
distMat=dis,
clustIndices=clinds, clustScores=clsco)
})
#####################
# title: prcompB
# description: interface to prcomp {stats}
# arguments:
# exprObj ExpressionSet
# classifLab character string specifying what covariate data
# to use for classification
# metric for distance matrix
# value:
# object of class "classifPred"
# where sampLabels are the labels of the original sample
# example:
# prOut <- prcompB(golubMerge[100:200,], "ALL.AML")
####################
#
#setGeneric("prcompB", function(exprObj, classifLab, retx=TRUE, center=TRUE, scale.=FALSE, tol, metric="euclidean"){
# standardGeneric("prcompB")
#})
#
#setMethod("prcompB", c("ExpressionSet", "character", "ANY", "ANY", "ANY", "ANY", "ANY"),
# function(exprObj, classifLab, retx, center, scale., tol, metric){
#
# if(missing(tol)){ tol <- NULL }
#
# dat <- t(exprs(exprObj))
# dis <- dist(dat, method=metric)
# cl <- exprObj[[classifLab]]
# row.names(dat) <- cl
# out <- stats::prcomp(dat, retx=retx, center=center, scale.=scale., tol=tol)
#
# new("classifPred", sampLabels=cl, distMat=dis, classifObj=out)
#
#})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.