Nothing
#####################
# PACKAGE: pamr
#####################
#
#####################
# title: pamrB
# description: interface to pamr {pamr}
# arguments:
# exprObj ExpressionSet
# trainInd vector of indices for the columns to be
# included in the training set
# classifLab character string specifying what covariate data
# to use for classification
# metric for distance matrix
# value:
# object of class "classifPred"
# example:
# train <- c(sample(1:47, 23), sample(48:72, 12))
# pOut <- pamrB(golubMerge[100:200,], "ALL.AML", train)
####################
setGeneric("pamrB", function(exprObj, classifLab, trainInd, thresholdp=1, threshold,
n.threshold = 30, scale.sd = TRUE, threshold.scale, se.scale,
offset.percent = 50, prior, remove.zeros = TRUE, sign.contrast="both",
metric="euclidean"){
standardGeneric("pamrB")
})
setMethod("pamrB", c("ExpressionSet", "character", "integer", "ANY", "ANY", "ANY", "ANY", "ANY",
"ANY", "ANY", "ANY", "ANY", "ANY", "ANY"),
function(exprObj, classifLab, trainInd, thresholdp, threshold, n.threshold,
scale.sd, threshold.scale, se.scale, offset.percent, prior, remove.zeros,
sign.contrast="both", metric){
if(missing(threshold)){ threshold <- NULL }
if(missing(prior)){ prior <- NULL }
if(missing(threshold.scale)){ threshold.scale <- NULL }
if(missing(se.scale)){ se.scale <- NULL }
cl <- pData(exprObj)[[classifLab]][trainInd]
trainDat <- list(x=exprs(exprObj)[,trainInd], y = cl)
testDat <- exprs(exprObj)[,-trainInd]
dis <- dist(t(exprs(exprObj)[,-trainInd]), method=metric)
require(pamr)
out <- pamr.train(trainDat, threshold=threshold, n.threshold=n.threshold,
scale.sd=scale.sd, threshold.scale=threshold.scale, se.scale=se.scale,
offset.percent=offset.percent, prior=prior, remove.zeros=remove.zeros,
sign.contrast=sign.contrast)
res <- pamr.predict(out, testDat, thresholdp)
new("classifOutput", method="pamr",
predLabels=newPredClass(as.character(res)),
trainInds=trainInd, allClass=as.character(pData(exprObj)[[classifLab]]),
predScores=newProbArray(out$prob),
RObject=out, call=match.call(), distMat=dis)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.