Nothing
#####################
# PACKAGE: nnet
#####################
#
#####################
# title: nnetB
# description: interface to nnet {nnet}
# arguments:
# exprObj ExpressionSet
# trainInd vector of indices for the columns to be
# included in the training set
# classifLab character string specifying what covariate data
# to use for classification
# metric for distance matrix
# value:
# object of class "classifPred"
# example:
# train <- c(sample(1:47, 23), sample(48:72, 12))
# nnOut <- nnetB(golubMerge[100:200,], "ALL.AML", train)
# note: entropy, softmax, censored, linout (mutually exclusive)
# are left to the user to specify if something other than the default
# is required (see nnet man page)
####################
setGeneric("nnetB", function(exprObj, classifLab, trainInd, weights, size=2, Wts,
mask, skip=FALSE, rang=0.7, decay=0, maxit=100, Hess=FALSE, trace=TRUE, MaxNWts=1000,
abstol=1.0e-4, reltol=1.0e-8, metric="euclidean", ...){
standardGeneric("nnetB")
})
setMethod("nnetB", c("ExpressionSet", "character", "integer", "ANY", "ANY",
"ANY", "ANY", "ANY", "ANY", "ANY", "ANY", "ANY", "ANY",
"ANY", "ANY", "ANY", "ANY"),
function(exprObj, classifLab, trainInd, weights, size, Wts, mask,
skip, rang, decay, maxit, Hess, trace, MaxNWts, abstol, reltol, metric, ...){
cl <- pData(exprObj)[[classifLab]][trainInd]
trainDat <- data.frame(t(exprs(exprObj)[,trainInd]), sampLab = cl)
testDat <- data.frame(t(exprs(exprObj)[,-trainInd]))
dis <- dist(testDat, method=metric)
if(missing(weights)){ weights <- rep(1,length(cl)) }
if(missing(Wts)){ Wts <- NULL }
if(missing(mask)){ mask <- NULL }
out <- nnet::nnet(sampLab~., data=trainDat, weights=weights, size=size, skip=skip,
rang=rang, decay=decay, maxit=maxit, Hess=Hess, trace=trace,
MaxNWts=MaxNWts, abstol=abstol, reltol=reltol, ...)
new("classifOutput", method="nnet",
predLabels=newPredClass(as.character(predict(out, testDat, type="class"))),
trainInds=trainInd, allClass=as.character(pData(exprObj)[[classifLab]]),
predScores=newProbMat(predict(out, newdata=testDat)), call=match.call(),
distMat=dis, RObject=out)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.