Nothing
#####################
# PACKAGE: cluster
#####################
#
#####################
# title: agnesB
# description: interface to agnes {cluster}
# arguments:
# exprObj ExpressionSet
# classifLab character string specifying what covariate data to use for classification
# value:
# object of class "classifPred"
# where sampLabels are the labels of the original sample
# example:
# agOut <- agnesB(golubMerge[100:200,], "ALL.AML")
#####################
setGeneric("agnesB", function(exprObj, k, height=0, stand=FALSE, method="average",
keep.diss=TRUE, keep.data=TRUE, metric="euclidean", ...){
standardGeneric("agnesB")
})
setMethod("agnesB", c("ExpressionSet", "numeric", "ANY",
"ANY", "ANY", "ANY", "ANY", "ANY"),
function(exprObj, k, height, stand, method, keep.diss, keep.data, metric, ...){
dat <- t(exprs(exprObj))
dis <- dist(dat, method=metric)
# row.names(dat) <- pData(exprObj)[[classifLab]]
out <- cluster::agnes(dat, metric=metric, stand=stand, method=method,
keep.diss=keep.diss, keep.data=keep.data)
tmp <- wrapClust(out, k, height, dis)
new("clustOutput", method="agnes",
RObject=out, call=match.call(),
distMat=dis,
clustIndices=tmp$clinds, clustScores=tmp$clsco)
})
#####################
# title: claraB
# description: interface to clara {cluster}
# arguments:
# exprObj ExpressionSet
# classifLab character string specifying what covariate data
# to use for classification
# metric for distance matrix
# value:
# object of class "classifPred"
# example:
# clObj <- claraB(golubMerge[100:200,], "ALL.AML", 2)
#####################
setGeneric("claraB", function(exprObj, k, height=0, stand=FALSE,
samples=5, sampsize, trace=0, keep.data=TRUE, keepdata, rngR=FALSE, metric="euclidean"){
standardGeneric("claraB")
})
setMethod("claraB", c("ExpressionSet", "numeric", "ANY", "ANY", "ANY", "ANY", "ANY", "ANY", "ANY",
"ANY", "ANY"), function(exprObj, k, height, stand, samples, sampsize,
trace, keep.data, keepdata, rngR, metric){
if(missing(sampsize)){ sampsize <- 40 + 2*k }
if (height > 0 ) warning("ignoring height parameter")
dat <- t(exprs(exprObj))
dis <- dist(dat, method=metric)
out <- cluster::clara(dat, k=k, metric=metric, stand=stand, samples=samples, sampsize=sampsize, trace=trace, keep.data=keep.data, keepdata=keepdata, rngR= rngR)
clinds <- newGroupIndex(out$clustering)
clsco <- newSilhouetteVec(cluster::silhouette( clinds, dis )[,3])
new("clustOutput", method="clara",
RObject=out, call=match.call(),
distMat=dis,
clustIndices=clinds, clustScores=clsco)
})
#####################
# title: dianaB
# description: interface to diana {cluster}
# arguments:
# exprObj ExpressionSet
# classifLab character string specifying what covariate data to use for classification
# value:
# object of class "classifPred"
# where sampLabels are the labels of the original sample
# example:
# diOut <- dianaB(golubMerge[100:200,], "ALL.AML")
#####################
setGeneric("dianaB", function(exprObj, k, height=0, diss, stand=FALSE,
keep.diss, keep.data=TRUE, metric="euclidean"){
standardGeneric("dianaB")
})
setMethod("dianaB", c("ExpressionSet", "numeric", "ANY", "ANY", "ANY", "ANY", "ANY", "ANY"),
function(exprObj, k, height, diss, stand, keep.diss, keep.data, metric){
dat <- t(exprs(exprObj))
dis <- dist(dat, method=metric)
out <- cluster::diana(dat, diss=FALSE, metric=metric,
stand=stand, keep.diss=TRUE,
keep.data=keep.data)
tmp <- wrapClust( out, k, height, dis)
new("clustOutput", method="diana",
RObject=out, call=match.call(),
distMat=dis,
clustIndices=tmp$clinds, clustScores=tmp$clsco)
})
#####################
# title: fannyB
# description: interface to fanny {cluster}
# arguments:
# exprObj ExpressionSet
# classifLab character string specifying what covariate data
# to use for classification
# metric for distance matrix
# value:
# object of class "classifPred"
# example:
# faOut <- fannyB(golubMerge[100:200,], "ALL.AML", 2)
#####################
setGeneric("fannyB", function(exprObj, k, height=0, diss, stand=FALSE, metric="euclidean"){
standardGeneric("fannyB")
})
setMethod("fannyB", c("ExpressionSet", "numeric", "ANY", "ANY", "ANY", "ANY"),
function(exprObj, k, height, diss, stand, metric){
if (height > 0) warning("ignoring height parameter")
if(missing(diss)){ diss <- F }
dat <- t(exprs(exprObj))
dis <- dist(dat, method=metric)
out <- cluster::fanny(dat, k=k, diss=diss, metric=metric, stand=stand)
clinds <- newGroupIndex(out$clustering)
clsco <- newSilhouetteVec(cluster::silhouette( clinds, dis )[,3])
new("clustOutput", method="fanny",
RObject=out, call=match.call(),
distMat=dis,
clustIndices=clinds, clustScores=clsco)
})
#####################
# title: pamB
# description: interface to pam {cluster}
# arguments:
# exprObj ExpressionSet
# classifLab character string specifying what covariate data
# to use for classification
# metric for distance matrix
# value:
# object of class "classifPred"
# example:
# paOut <- pamB(golubMerge[100:200,], "ALL.AML", 2)
#####################
setGeneric("pamB", function(exprObj, k, height=0, diss, stand=FALSE,
keep.diss=TRUE, keep.data=TRUE, metric="euclidean"){
standardGeneric("pamB")
})
setMethod("pamB", c("ExpressionSet", "numeric", "ANY", "ANY", "ANY", "ANY", "ANY", "ANY"),
function(exprObj, k, height, diss, stand, keep.diss, keep.data, metric){
dat <- t(exprs(exprObj))
dis <- dist(dat, method=metric)
if (height > 0 ) warning("ignoring height parameter")
out <- cluster::pam(dat, k=k, diss=FALSE, metric=metric, stand=stand, keep.diss=keep.diss,
keep.data=keep.data)
clinds <- newGroupIndex(out$clustering)
clsco <- newSilhouetteVec(cluster::silhouette( clinds, dis )[,3])
new("clustOutput", method="pam",
RObject=out, call=match.call(),
distMat=dis,
clustIndices=clinds, clustScores=clsco)
})
#
# UNTIL THERE IS A CLEAR METHOD FOR DICHOTOMIZING AN EXPRSET,
# MONA WILL HAVE TO BE RUN RAW
#####################
# title: monaB
# description: interface to mona {cluster}
# arguments:
# exprObj ExpressionSet
# classifLab character string specifying what covariate data
# to use for classification
# value:
# object of class "classifPred"
# where sampLabels are the labels of the original sample
# example:
# x <- matrix(sample(c(1,2), 7272, replace=T), ncol=72, nrow=101)
# colnames(x) <- golubMerge$"ALL.AML"
# g2Merge <- golubMerge[100:200,]
# exprs(g2Merge) <- x
# mOut <- monaB(g2Merge, "ALL.AML")
# note: artificial example since data needs to be binary
#####################
#setGeneric("monaB", function(exprObj, classifLab, metric="euclidean"){
# standardGeneric("monaB")
#})
#
#setMethod("monaB", c("ExpressionSet", "character", "ANY"),
# function(exprObj, classifLab, metric){
#
# dat <- t(exprs(exprObj))
# dis <- dist(dat, method=metric)
# row.names(dat) <- pData(exprObj)[[classifLab]]
# out <- cluster::mona(dat)
#
# new("classifPred", sampLabels=pData(exprObj)[[classifLab]], distMat=dis, classifObj=out)
##})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.