Nothing
#####################
# PACKAGE: MASS
#####################
#
#####################
# title: ldaB
# description: interface to lda {MASS}
# arguments:
# exprObj ExpressionSet
# trainInd vector of indices for the columns to be
# included in the training set
# classifLab character string specifying what covariate data
# to use for classification
# metric for distance matrix
# value:
# object of class "classif3Output"
# example:
# train <- c(sample(1:47, 21), sample(48:72, 12))
# lOut <- ldaB(golubMerge[100:200,], "ALL.AML", train)
####################
setGeneric("ldaB", function(exprObj, classifLab, trainInd, prior, tol=1.0e-4,
method, CV=FALSE, nu, metric="euclidean", ...){
standardGeneric("ldaB")
})
setMethod("ldaB", c("ExpressionSet", "character", "integer", "ANY", "ANY", "ANY", "ANY", "ANY", "ANY"),
function(exprObj, classifLab, trainInd, prior, tol, method, CV, nu, metric, ...){
if(missing(method)){ method <- NULL }
if(missing(nu)){ nu <- NULL }
cl <- pData(exprObj)[[classifLab]][trainInd]
if(missing(prior)){ prior <- as.numeric(table(cl))/length(cl) }
trainDat <- t(exprs(exprObj)[,trainInd])
testDat <- t(exprs(exprObj)[,-trainInd])
dis <- dist(testDat, method=metric)
out <- MASS::lda(trainDat, grouping=cl, prior=prior, tol=tol, method=method,
CV=CV, nu=nu, ...)
res <- predict(out, testDat, ...)
new("classifOutput", method="lda",
predLabels=newPredClass(as.character(res$class)),
trainInds=trainInd, allClass=as.character(pData(exprObj)[[classifLab]]),
predScores=newProbMat(res$posterior),
RObject=out, call=match.call(), distMat=dis)
})
#####################
# title: qdaB
# description: interface to qda {MASS}
# arguments:
# exprObj ExpressionSet
# trainInd vector of indices for the columns to be
# included in the training set
# classifLab character string specifying what covariate data
# to use for classification
# metric for distance matrix
# value:
# object of class "classif3Output"
# example:
# train <- c(sample(1:47, 21), sample(48:72, 12))
# qOut <- qdaB(golubMerge[100:200,], "ALL.AML", train)
# note: example is not executable - "some group is too small for qda"
####################
setGeneric("qdaB", function(exprObj, classifLab, trainInd, prior, tol=1.0e-4, method, CV=FALSE, nu,
metric="euclidean", ...){
standardGeneric("qdaB")
})
setMethod("qdaB", c("ExpressionSet", "character", "integer", "ANY", "ANY", "ANY", "ANY", "ANY", "ANY"),
function(exprObj, classifLab, trainInd, prior, tol, method, CV, nu, metric, ...){
if(missing(method)){ method <- NULL }
if(missing(nu)){ nu <- NULL }
cl <- pData(exprObj)[[classifLab]][trainInd]
if(missing(prior)){ prior <- as.numeric(table(cl))/length(cl) }
trainDat <- t(exprs(exprObj)[,trainInd])
testDat <- t(exprs(exprObj)[,-trainInd])
dis <- dist(testDat, method=metric)
out <- MASS::qda(trainDat, cl, prior=prior, tol=tol, method=method,
CV=CV, nu=nu, ...)
res <- predict(out, testDat, ...)
new("classifOutput", method="qda",
predLabels=newPredClass(as.character(res$class)),
trainInds=trainInd, allClass=as.character(pData(exprObj)[[classifLab]]),
predScores=newProbMat(res$posterior),
RObject=out, call=match.call(), distMat=dis)
})
#####################
# title: isoMDSB
# description: interface to isoMDS {MASS}
# arguments:
# exprObj ExpressionSet
# classifLab character string specifying what covariate data
# to use for classification
# metric for distance matrix
# value:
# object of class "classifPred"
# where sampLabels are the labels of the original sample
# example:
# iOut <- isoMDSB(golubMerge[100:200,], "ALL.AML", k=1)
####################
setGeneric("isoMDSB", function(exprObj, classifLab, y, k=2, maxit=50, trace=TRUE,
tol=1e-3, p=2, metric="euclidean"){
standardGeneric("isoMDSB")
})
#setMethod("isoMDSB", c("ExpressionSet", "character", "ANY", "ANY", "ANY", "ANY", "ANY", "ANY", "ANY"),
# function(exprObj, classifLab, y, k, maxit, trace, tol, p, metric){
#
# cl <- pData(exprObj)[[classifLab]]
# dat <- exprs(exprObj)
# colnames(dat) <- cl
# dmat <- dist(t(dat), method=metric)
#
# if(missing(y)){ y <- cmdscale(dmat, k) }
#
# out <- MASS::isoMDS(dmat, y=y, k=k, maxit=maxit, trace=trace, tol=tol, p=p)
# res <- predict(out, testDat, ...)
# new("classifOutput", method="qda",
# predLabels=newPredClass(as.character(res$class)),
# trainInds=trainInd, allClass=as.character(pData(exprObj)[[classifLab]]),
# predScores=newProbMat(res$posterior),
# RObject=out, call=match.call(), distMat=dis)
# new("classifPred", sampLabels=cl, distMat=dmat, classifObj=out)
#})
#####################
# title: sammonB
# description: interface to sammon {MASS}
# arguments:
# exprObj ExpressionSet
# classifLab character string specifying what covariate data
# to use for classification
# metric for distance matrix
# value:
# object of class "classifPred"
# where sampLabels are the labels of the original sample
# example:
# sOut <- sammonB(golubMerge[100:200,], "ALL.AML")
####################
#
#setGeneric("sammonB", function(exprObj, classifLab, y, k=2, niter=100, trace=TRUE,
# magic=0.2, tol=1e-4, metric="euclidean"){
# standardGeneric("sammonB")
#})
#
#setMethod("sammonB", c("ExpressionSet", "character", "ANY", "ANY", "ANY", "ANY", "ANY", "ANY", "ANY"),
# function(exprObj, classifLab, y, k, niter, trace, magic, tol, metric){
#
# cl <- pData(exprObj)[[classifLab]]
# dat <- exprs(exprObj)
# colnames(dat) <- cl
# dmat <- dist(t(dat), method=metric)
# if(missing(y)){ y <- cmdscale(dmat, k) }
#
# out <- MASS::sammon(dmat, y=y, k=k, niter=niter, trace=trace,
# magic=magic, tol=tol)
# new("classifPred", sampLabels=cl, distMat=dmat, classifObj=out)
#})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.