Nothing
# first comes the schema-based class collection, then
# the legacy classes for back-compatibility
## setClass("learnerSchema", representation(
## packageName="character",
## mlFunName="character",
## converter="function"),
## prototype=prototype(packageName="",
## mlFunName="",
## converter=function(obj, data, trainInd){}))
## L. Gatto <lg390@cam.ac.uk>, 1 Aug 2011
## new learnerSchema with predictor function
## - converters are defined in MLIConverters.R
## - predicters are defined in MLIPredicters.R
## This change requires to update the schema interfaces
## defined in schemaInterfaces.R by adding the
## predicter slot.
setClass("learnerSchema",
representation(packageName="character",
mlFunName="character",
converter="function",
predicter="function"),
prototype=prototype(
packageName="",
mlFunName="",
converter = function(obj, data, trainInd){},
predicter = function(obj, newdata){
.predClass <- predict(obj, newdata)
## no .predScores in standard predicter
## write specific ones to get prediction scores
.predScores <- numeric()
return(list(testPredictions=.predClass,
testScores=.predScores))
}))
#setClass("clusteringSchema", representation(distMethod="character",
# agglomMethod="character",
# algorithm="character", extras="list"), contains="learnerSchema")
setClass("clusteringSchema", representation(
package="character", mlFunName="character",
distFun="function", converter="function"))
setClass("classifierOutput", representation(
trainInd="numeric",
testOutcomes="factor",
testPredictions="factor",
testScores="ANY",
trainOutcomes="factor",
trainPredictions="factor",
trainScores="ANY",
fsHistory="list",
RObject="ANY",
call="call",
embeddedCV="logical",
learnerSchema="learnerSchema"),
prototype=prototype(testOutcomes=factor(),
testPredictions=factor(),
testScores=NULL,
trainOutcomes=factor(),
trainPredictions=factor(),
trainScores=NULL,
fsHistory=list(),
RObject=list(),
call=new("call"),
embeddedCV=FALSE,
learnerSchema=new("learnerSchema")))
#setClass("nonstandardLearnerSchema", representation(frontConverter="function",
# hasNamespace="logical"), contains="learnerSchema")
setOldClass("silhouette")
#
setOldClass("prcomp")
#
setClass("prcompObj", contains="prcomp")
#
#setClass("clusteringOutput", representation(
# partition="integer", silhouette="silhouette", distEnv="environment",
# prcomp="prcompObj",
# metric="character", call="call", learnerSchema="learnerSchema",
# RObject="ANY"))
setClass("xvalSpec",
representation(type="character",
niter="numeric",
partitionFunc="function",
fsFun="function"))
# constructor defined here for now
xvalSpec <- function(type,
niter = 0,
partitionFunc = function(data, classLab,iternum){ (seq_len(nrow(data)))[-iternum] },
fsFun = function(formula, data) formula ) {
new("xvalSpec", type=type, niter=niter, partitionFunc=partitionFunc, fsFun=fsFun)
}
# -- below find the legacy classes as of sep 9 2007
# virual classes are defined with specializations to
# a) class labels (as in classification outputs) vs
# group indices (as in clustering outputs)
# b) probability matrices (as with nnet predict) vs
# vector scores (as in knn voting proportions)
setClass("clusteringOutput", representation(
partition="numeric", silhouette="silhouette",
prcomp="prcompObj", distFun="function", converter="function",
call="call", learnerSchema="clusteringSchema",
RObject="ANY"), prototype=prototype(
partition=numeric(0),
silhouette={x = 0; class(x)="silhouette"; x},
prcomp={x = 0; class(x)="prcomp"; new("prcompObj", x)},
distFun = dist, converter=function(){}, call=new("call"))
)
setGeneric("RObject", function(x) standardGeneric("RObject"))
setMethod("RObject", "clusteringOutput", function(x)x@RObject)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.