Nothing
#' MIGSAmGSZ
#'
#' \code{MIGSAmGSZ} is an optimized mGSZ version. It runs much faster than the
#' original mGSZ version, moreover it can run in multicore technology.
#' It allows to analyze RNAseq data by using \code{\link[limma]{voom}} function.
#' mGSZ: Gene set analysis based on Gene Set Z scoring function and asymptotic
#' p-value.
#'
#' @param x gene expression data matrix (rows as genes and columns as samples).
#' @param y gene set data (list).
#' @param l vector of response values (example:c("Cond1","Cond1","Cond2",
#' "Cond2","Cond2")).
#' @param use.voom logical indicating wether use voom or not (if RNAseq data we
#' recommend using use.voom=TRUE).
#' @param rankFunction internal use.
#' @param min.sz minimum size of gene sets (number of genes in a gene set) to
#' be included in the analysis.
#' @param pv estimate of the variance associated with each observation.
#' @param w1 weight 1, parameter used to calculate the prior variance obtained
#' with class size var.constant. This penalizes especially small classes and
#' small subsets. Values around 0.1 - 0.5 are expected to be reasonable.
#' @param w2 weight 2, parameter used to calculate the prior variance obtained
#' with the same class size as that of the analyzed class. This penalizes small
#' subsets from the gene list. Values around 0.3 and 0.5 are expected to be
#' reasonable.
#' @param vc size of the reference class used with wgt1.
#' @param p number of permutations for p-value calculation.
#' @param ... not in use.
#'
#' @return A data.frame with gene sets p-values and additional information.
#'
#' @docType methods
#' @name MIGSAmGSZ
#' @rdname MIGSAmGSZ
#'
#' @exportMethod MIGSAmGSZ
#'
setGeneric(name = "MIGSAmGSZ", def = function(x, y, l, ...) {
standardGeneric("MIGSAmGSZ")
})
#' @rdname MIGSAmGSZ
#' @aliases MIGSAmGSZ,matrix,list,vector-method
#'
#' @importClassesFrom edgeR DGEList
#' @importFrom edgeR DGEList
#' @importClassesFrom limma MAList
#' @include FitOptions-class.R
#' @include GSEAparams.R
#' @include MGSZ.R
#'
#' @examples
#' nGenes <- 1000
#' # 1000 genes
#' nSamples <- 30
#' # 30 subjects
#' geneNames <- paste("g", 1:nGenes, sep = "")
#' # with names g1 ... g1000
#' ## Create random gene expression data matrix.
#' set.seed(8818)
#' exprData <- matrix(rnorm(nGenes * nSamples), ncol = nSamples)
#' rownames(exprData) <- geneNames
#' ## There will be 40 differentialy expressed genes.
#' nDeGenes <- nGenes / 25
#' ## Lets generate the offsets to sum to the differentialy expressed genes.
#' deOffsets <- matrix(2 * abs(rnorm(nDeGenes * nSamples / 2)), ncol = nSamples / 2)
#' ## Randomly select which are the DE genes.
#' deIndexes <- sample(1:nGenes, nDeGenes, replace = FALSE)
#' exprData[deIndexes, 1:(nSamples / 2)] <-
#' exprData[deIndexes, 1:(nSamples / 2)] + deOffsets
#' ## 15 subjects with condition C1 and 15 with C2.
#' conditions <- rep(c("C1", "C2"), c(nSamples / 2, nSamples / 2))
#'
#' nGSets <- 200
#' # 200 gene sets
#' ## Lets create randomly 200 gene sets, of 10 genes each
#' gSets <- lapply(1:nGSets, function(i) sample(geneNames, size = 10))
#' names(gSets) <- paste("set", as.character(1:nGSets), sep = "")
#' \dontrun{
#' mGSZres <- MIGSAmGSZ(exprData, gSets, conditions)
#' }
#'
setMethod(
f = "MIGSAmGSZ",
signature = c("matrix", "list", "vector"),
definition = function(x, y, l, use.voom = FALSE, rankFunction = NA,
min.sz = 5, pv = 0, w1 = 0.2, w2 = 0.5, vc = 10, p = 200) {
# it formats almost the same inputs as mGSZ and uses MIGSAs mGSZ.
# setting all MIGSA parameters
if (use.voom) {
exprData <- DGEList(counts = x)
if (!is(rankFunction, "function")) {
rankFunction <- voomLimaRank
}
} else {
exprData <- new("MAList", list(M = x))
if (!is(rankFunction, "function")) {
rankFunction <- mGszEbayes
}
}
fitOptions <- FitOptions.default(l)
params <- GSEAparams(
perm_number = p,
min_sz = min.sz,
pv = pv,
w1 = w1,
w2 = w2,
vc = vc
)
gSets <- y
mgszRes <- MIGSA_mGSZ(
exprData, fitOptions, gSets,
rankFunction, params
)
return(mgszRes)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.