R/FitOptions-class.R

Defines functions FitOptions.data.frame FitOptions.default FitOptions

Documented in FitOptions FitOptions.data.frame FitOptions.default

#' FitOptions S4 class implementation in R
#'
#' This S4 class contains the parameters to provide for model fitting.
#' If the vector of samples is provided (must be two different, e.g.
#' c("C1", "C1", "C2")) then it will contrast C1 vs. C2. If not, it should be
#' provided with a data.frame x, the formula and the contrast, it will create
#' the model matrix using x as data, and the formula.
#'
#' @param x There are two options for x:
#' \itemize{
#' \item It can be a character vector containing the two conditions (length
#' must be the same as the number of subjects to use).
#' \item It can be a data.frame used as data by
#' \code{\link[stats]{model.matrix}}.
#' }
#' @param formula (only used if x is data.frame) used by
#' \code{\link[stats]{model.matrix}}.
#' @param contrast (only used if x is data.frame) the contrast to test.
#' @param ... not in use.
#'
#' @return FitOptions object.
#'
#' @docType methods
#' @name FitOptions-class
#' @rdname FitOptions-class
#'
#' @examples
#' ## Supose we have 15 subjects, the first 8 from Condition1 and the last 7
#' ## from Condition2, lets create the corresponding FitOptions object to test
#' ## Condition1 vs. Condition2.
#' l <- c(rep("Condition1", 8), rep("Condition2", 7))
#' fit_options <- FitOptions(l)
#' ## Otherwise if we have the data and formula for model.matrix function and
#' ## the desired contrast, we can create the FitOptions object as:
#' myData <- data.frame(cond = c(rep("Condition1", 8), rep("Condition2", 7)))
#' myFormula <- ~ cond - 1
#' myContrast <- c(-1, 1)
#' fit_options <- FitOptions(myData, myFormula, myContrast)
#' @importFrom futile.logger flog.error
#' @importFrom stats model.matrix
#' @exportClass FitOptions
#'
setClass(
  Class = "FitOptions",
  slots = c(
    col_data = "data.frame",
    formula = "formula",
    contrast = "numeric",
    design_matrix = "matrix"
  ),
  prototype = list(),
  validity = function(object) {
    design_matrix <- object@design_matrix
    formula <- object@formula
    col_data <- object@col_data
    contrast <- object@contrast

    #         design_matrix_error <- all.equal(design_matrix, model.matrix(formula,
    #                                             data=col_data));
    #         contst_names <- make.names(
    #                     colnames(model.matrix(formula, data=col_data)));
    contrast_ok <- length(contrast) == ncol(design_matrix)
    if (!contrast_ok) {
      flog.error("Contrast length must be equal to design_matrix
                                                        columns number.")
    }

    return(contrast_ok)
  }
)

#' @rdname FitOptions-class
#' @export FitOptions
#'
FitOptions <- function(x, ...) {
  UseMethod("FitOptions", x)
}

#' @rdname FitOptions-class
#' @aliases FitOptions.default
#' @export FitOptions.default
#' @rawNamespace S3method(FitOptions, default)
#' @importFrom stats model.matrix
#'
FitOptions.default <- function(x, ...) {
  # checking that exactly two conditions are present
  if (length(x) < 2) {
    stop("More than two labels required.")
  }
  if (length(unique(x)) != 2) {
    stop("Exactly two possible conditions required.")
  }

  # creating the model from the two conditions
  act_col_data <- data.frame(cond = factor(x))
  act_formula <- ~ cond - 1

  act_contrast <- c(-1, 1)
  .Object <- FitOptions(
    x = act_col_data, formula = act_formula,
    contrast = act_contrast
  )
  return(.Object)
}

#' @rdname FitOptions-class
#' @aliases FitOptions.data.frame
#' @export FitOptions.data.frame
#' @rawNamespace S3method(FitOptions, data.frame)
#' @importFrom stats model.matrix
#'
FitOptions.data.frame <- function(x, formula, contrast, ...) {
  stopifnot(is(x, "data.frame"))
  stopifnot(is(formula, "formula"))
  stopifnot(is(contrast, "numeric"))

  # completing the model
  act_design <- model.matrix(formula, data = x)
  .Object <- new("FitOptions",
    col_data = x, formula = formula,
    contrast = contrast, design_matrix = act_design
  )
  return(.Object)
}

Try the MIGSA package in your browser

Any scripts or data that you put into this service are public.

MIGSA documentation built on Nov. 8, 2020, 8:26 p.m.