Nothing
## ---- results = "hide",warning = FALSE, message=FALSE-------------------------
library(MCbiclust)
## ---- results = "hide",warning = FALSE,message=FALSE--------------------------
library(ggplot2)
library(gplots)
library(dplyr)
library(gProfileR)
library(MASS)
library(devtools)
## -----------------------------------------------------------------------------
data(CCLE_small)
data(Mitochondrial_genes)
## -----------------------------------------------------------------------------
mito.loc <- which(row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]
## ---- results='hide', eval=FALSE----------------------------------------------
# set.seed(102)
# CCLE.seed <- FindSeed(gem = CCLE.mito,
# seed.size = 10,
# iterations = 10000,
# messages = 1000)
## ---- results='hide', eval=TRUE, echo=FALSE-----------------------------------
CCLE.seed <- MCbiclust:::Vignette_seed
## -----------------------------------------------------------------------------
set.seed(103)
random.seed <- sample(seq(length = dim(CCLE.mito)[2]), 10)
CorScoreCalc(CCLE.mito,random.seed)
CorScoreCalc(CCLE.mito,CCLE.seed)
## ---- dev='png'---------------------------------------------------------------
CCLE.random.cor <- cor(t(CCLE.mito[,random.seed]))
heatmap.2(CCLE.random.cor,trace = "none")
## ---- dev='png'---------------------------------------------------------------
CCLE.mito.cor <- cor(t(CCLE.mito[,CCLE.seed]))
heatmap.2(CCLE.mito.cor,trace = "none")
## ----dev='png'----------------------------------------------------------------
CCLE.hicor.genes <- as.numeric(HclustGenesHiCor(CCLE.mito,
CCLE.seed,
cuts = 8))
CCLE.mito.cor2 <- cor(t(CCLE.mito[CCLE.hicor.genes, CCLE.seed]))
CCLE.heat <- heatmap.2(CCLE.mito.cor2,trace = "none")
## -----------------------------------------------------------------------------
CCLE.groups <- list(labels(CCLE.heat$rowDendrogram[[1]]),
labels(CCLE.heat$rowDendrogram[[2]]))
## -----------------------------------------------------------------------------
CCLE.cor.vec <- CVEval(gem.part = CCLE.mito,
gem.all = CCLE_small,
seed = CCLE.seed, splits = 10)
## ---- results='hide', eval=FALSE----------------------------------------------
# GSE.MW <- GOEnrichmentAnalysis(gene.names = row.names(CCLE_small),
# gene.values = CCLE.cor.vec,
# sig.rate = 0.05)
## ---- results='hide', eval=TRUE, echo=FALSE-----------------------------------
GSE.MW <- MCbiclust:::Vignette_GSE
## ---- results = "asis"--------------------------------------------------------
row.names(GSE.MW) <- NULL
pander::pandoc.table(GSE.MW[1:10,],row.names = FALSE)
## ---- results = "asis"--------------------------------------------------------
top200 <- row.names(CCLE_small)[order(CCLE.cor.vec,
decreasing = TRUE)[seq(200)]]
# top200.gprof <- gprofiler(top200)
# dim(top200.gprof)
## ---- results = "asis"--------------------------------------------------------
# pander::pandoc.table(top200.gprof[seq(10),-c(1,2,7,8,11,14)],
# row.names = FALSE)
## ---- results='hide', eval=FALSE----------------------------------------------
# CCLE.samp.sort <- SampleSort(CCLE.mito[as.numeric(CCLE.hicor.genes),],
# seed = CCLE.seed)
## ---- results='hide', eval=TRUE, echo=FALSE-----------------------------------
CCLE.samp.sort <- MCbiclust:::Vignette_sort[[1]]
## -----------------------------------------------------------------------------
top.mat <- CCLE.mito[as.numeric(CCLE.hicor.genes),]
pc1.vec <- PC1VecFun(top.gem = top.mat,
seed.sort = CCLE.samp.sort, n = 10)
## -----------------------------------------------------------------------------
CCLE.bic <- ThresholdBic(cor.vec = CCLE.cor.vec,
sort.order = CCLE.samp.sort,
pc1 = pc1.vec, samp.sig = 0.05)
## -----------------------------------------------------------------------------
pc1.vec <- PC1Align(gem = CCLE_small, pc1 = pc1.vec,
sort.order = CCLE.samp.sort,
cor.vec = CCLE.cor.vec, bic = CCLE.bic)
## -----------------------------------------------------------------------------
av.genes.group1 <- colMeans(CCLE.mito[CCLE.groups[[1]],
CCLE.samp.sort])
av.genes.group2 <- colMeans(CCLE.mito[CCLE.groups[[2]],
CCLE.samp.sort])
## -----------------------------------------------------------------------------
CCLE.names <- colnames(CCLE_small)[CCLE.samp.sort]
fork.status <- ForkClassifier(pc1.vec, samp.num = length(CCLE.bic[[2]]))
CCLE.df <- data.frame(CCLE.name = CCLE.names,
PC1 = pc1.vec,
Fork = fork.status,
Average.Group1 = av.genes.group1,
Average.Group2 = av.genes.group2,
Order = seq(length = length(pc1.vec)))
ggplot(CCLE.df, aes(Order,PC1)) +
geom_point(aes(colour = Fork)) + ylab("PC1")
ggplot(CCLE.df, aes(Order,Average.Group1)) +
geom_point(aes(colour = Fork)) + ylab("Average Group 1")
ggplot(CCLE.df, aes(Order,Average.Group2)) +
geom_point(aes(colour = Fork)) + ylab("Average Group 2")
## -----------------------------------------------------------------------------
data(CCLE_samples)
## -----------------------------------------------------------------------------
CCLE.samples.names <- as.character(CCLE_samples[,1])
CCLE.samples.names[c(1:15)] <- paste("X",CCLE.samples.names[c(1:15)],
sep="")
CCLE_samples$CCLE.name <- CCLE.samples.names
## -----------------------------------------------------------------------------
rownames(CCLE_samples) <- as.character(CCLE_samples[,1])
CCLE.data.names <- colnames(CCLE_small)
CCLE_small_samples <- CCLE_samples[CCLE.data.names,]
## ---- warning=FALSE,message=FALSE---------------------------------------------
CCLE.df.samples <- inner_join(CCLE.df,CCLE_samples,by="CCLE.name")
ggplot(CCLE.df.samples, aes(Order,PC1)) +
geom_point(aes(colour=factor(Site.Primary))) + ylab("PC1")
## -----------------------------------------------------------------------------
rare.sites <- names(which(summary(CCLE.df.samples$Site.Primary) < 15))
CCLE.df.samples$Site.Primary2 <- as.character(CCLE.df.samples$Site.Primary)
rare.sites.loc <- which(CCLE.df.samples$Site.Primary2 %in% rare.sites)
CCLE.df.samples$Site.Primary2[rare.sites.loc] <- "Other"
ggplot(CCLE.df.samples, aes(Order,PC1)) +
geom_point(aes(colour=factor(Site.Primary2))) + ylab("PC1")
## ---- warning=FALSE,message=FALSE---------------------------------------------
ggplot(CCLE.df.samples, aes(Order,PC1)) +
geom_point(aes(colour=factor(Gender))) + ylab("PC1")
## -----------------------------------------------------------------------------
library(MASS)
# create contingency tables
ctable.site <- table(CCLE.df.samples$Fork,
CCLE.df.samples$Site.Primary)
ctable.gender <- table(CCLE.df.samples$Fork,
CCLE.df.samples$Gender,
exclude = "U")
chisq.test(ctable.site)
chisq.test(ctable.gender)
## ---- results='hide', message=FALSE, eval=FALSE-------------------------------
# CCLE.multi.seed <- list()
# initial.seed1 <- list()
#
# for(i in seq(100)){
# set.seed(i)
# initial.seed1[[i]] <- sample(seq(length = dim(CCLE_small)[2]),10)
# CCLE.multi.seed[[i]] <- FindSeed(gem = CCLE_small[c(501:1000), ],
# seed.size = 10,
# iterations = 500,
# initial.seed = initial.seed1[[i]])
# }
## ---- results='hide', eval=TRUE, echo=FALSE-----------------------------------
CCLE.multi.seed <- MCbiclust:::Vignette_multi_seed
initial.seed1 <- MCbiclust:::Vignette_initial_seed
## ---- results='hide', message=FALSE, eval=FALSE-------------------------------
# CCLE.cor.vec.multi <- list()
#
# for(i in seq(100)){
# CCLE.cor.vec.multi[[i]] <- CVEval(gem.part = CCLE_small[c(501:1000), ],
# gem.all = CCLE_small,
# seed = CCLE.multi.seed[[i]],
# splits = 10)
#
# }
## ---- results='hide', eval=TRUE, echo=FALSE-----------------------------------
CCLE.cor.vec.multi <- MCbiclust:::Vignette_multi_cv
## -----------------------------------------------------------------------------
len.a <- length(CCLE.cor.vec.multi[[1]])
len.b <- length(CCLE.cor.vec.multi)
multi.run.cor.vec.mat <- matrix(0,len.a,len.b)
for(i in 1:100){
multi.run.cor.vec.mat[,i] <- CCLE.cor.vec.multi[[i]]
}
rm(CCLE.cor.vec.multi)
## ----dev='png'----------------------------------------------------------------
CV.cor.mat1 <- abs(cor((multi.run.cor.vec.mat)))
cor.dist <- function(c){as.dist(1 - abs(c))}
routput.corvec.matrix.cor.heat <- heatmap.2(CV.cor.mat1,
trace="none",
distfun = cor.dist)
## -----------------------------------------------------------------------------
multi.clust.groups <- SilhouetteClustGroups(multi.run.cor.vec.mat,
max.clusters = 20,
plots = TRUE,rand.vec = FALSE)
## ----dev='png'----------------------------------------------------------------
gene.names <- row.names(CCLE_small)
av.corvec.fun <- function(x) rowMeans(multi.run.cor.vec.mat[,x])
average.corvec <- lapply(X = multi.clust.groups,
FUN = av.corvec.fun)
CVPlot(cv.df = as.data.frame(average.corvec),
geneset.loc = mito.loc,
geneset.name = "Mitochondrial",
alpha1 = 0.1)
## -----------------------------------------------------------------------------
GOfun <- function(x) GOEnrichmentAnalysis(gene.names = gene.names,
gene.values = x,
sig.rate = 0.05)
## ---- results='hide', message=FALSE, eval=FALSE-------------------------------
# corvec.gsea <- lapply(X = average.corvec,
# FUN = GOfun)
## ---- results='hide', eval=TRUE, echo=FALSE-----------------------------------
corvec.gsea <- MCbiclust:::Vignette_multi_gsea
## -----------------------------------------------------------------------------
CCLE.samp.multi.sort <- list()
multi.prep <- MultiSampleSortPrep(gem = CCLE_small,
av.corvec = average.corvec,
top.genes.num = 750,
groups = multi.clust.groups,
initial.seeds = CCLE.multi.seed)
## ----eval=FALSE---------------------------------------------------------------
# CCLE.samp.multi.sort[[1]] <- SampleSort(gem = multi.prep[[1]][[1]],
# seed = multi.prep[[2]][[1]])
#
# CCLE.samp.multi.sort[[2]] <- SampleSort(gem = multi.prep[[1]][[2]],
# seed = multi.prep[[2]][[2]])
## ---- results='hide', echo=FALSE----------------------------------------------
CCLE.samp.multi.sort <- list()
CCLE.samp.multi.sort[[1]] <- MCbiclust:::Vignette_sort[[2]][[1]]
CCLE.samp.multi.sort[[2]] <- MCbiclust:::Vignette_sort[[2]][[2]]
## -----------------------------------------------------------------------------
pc1.vec.multi <- list()
pc1.vec.multi[[1]] <- PC1VecFun(top.gem = multi.prep[[1]][[1]],
seed.sort = CCLE.samp.multi.sort[[1]], n = 10)
pc1.vec.multi[[2]] <- PC1VecFun(top.gem = multi.prep[[1]][[2]],
seed.sort = CCLE.samp.multi.sort[[2]], n = 10)
## -----------------------------------------------------------------------------
CCLE.bic.multi <- list()
CCLE.bic.multi[[1]] <- ThresholdBic(cor.vec = average.corvec[[1]],
sort.order = CCLE.samp.multi.sort[[1]],
pc1 = pc1.vec.multi[[1]], samp.sig = 0.05)
CCLE.bic.multi[[2]] <- ThresholdBic(cor.vec = average.corvec[[2]],
sort.order = CCLE.samp.multi.sort[[2]],
pc1 = pc1.vec.multi[[2]], samp.sig = 0.05)
pc1.vec.multi[[1]] <- PC1Align(gem = CCLE_small, pc1 = pc1.vec.multi[[1]],
sort.order = CCLE.samp.multi.sort[[1]],
cor.vec = average.corvec[[1]], bic = CCLE.bic.multi[[1]])
pc1.vec.multi[[2]] <- PC1Align(gem = CCLE_small, pc1 = pc1.vec.multi[[2]],
sort.order = CCLE.samp.multi.sort[[2]],
cor.vec = average.corvec[[2]], bic = CCLE.bic.multi[[2]])
## -----------------------------------------------------------------------------
CCLE.multi.df <- data.frame(CCLE.name = colnames(CCLE_small),
Bic1.order = order(CCLE.samp.multi.sort[[1]]),
Bic2.order = order(CCLE.samp.multi.sort[[2]]),
Bic1.PC1 = pc1.vec.multi[[1]][order(CCLE.samp.multi.sort[[1]])],
Bic2.PC1 = pc1.vec.multi[[2]][order(CCLE.samp.multi.sort[[2]])])
CCLE.multi.df.samples <- inner_join(CCLE.multi.df,CCLE_samples,by="CCLE.name")
rare.sites <- names(which(summary(CCLE.multi.df.samples$Site.Primary) < 15))
CCLE.multi.df.samples$Site.Primary2 <- as.character(CCLE.multi.df.samples$Site.Primary)
rare.sites.loc <- which(CCLE.multi.df.samples$Site.Primary2 %in% rare.sites)
CCLE.multi.df.samples $Site.Primary2[rare.sites.loc] <- "Other"
ggplot(CCLE.multi.df.samples, aes(Bic1.order,Bic1.PC1)) +
geom_point(aes(colour=factor(Site.Primary2))) + ylab("Bic1 PC1")
ggplot(CCLE.multi.df.samples, aes(Bic2.order,Bic2.PC1)) +
geom_point(aes(colour=factor(Site.Primary2))) + ylab("Bic2 PC1")
## ---- dev="png"---------------------------------------------------------------
cv.df <- as.data.frame(average.corvec)
cv.df$Mito1 <- CCLE.cor.vec
CVPlot(cv.df,cnames = c("R1","R2","M1"),
geneset.loc = mito.loc,
geneset.name = "Mitochondrial",
alpha1 = 0.1)
## -----------------------------------------------------------------------------
gene.loc1 <- which(row.names(CCLE.mito[CCLE.hicor.genes,]) %in% CCLE.groups[[1]])
gene.loc2 <- which(row.names(CCLE.mito[CCLE.hicor.genes,]) %in% CCLE.groups[[2]])
CCLE.ps <- PointScoreCalc(CCLE.mito[CCLE.hicor.genes,], gene.loc1, gene.loc2)
## ---- dev="png"---------------------------------------------------------------
CCLE.df$PointScore <- CCLE.ps[CCLE.samp.sort]
ggplot(CCLE.df, aes(Order,PC1)) +
geom_point(aes(colour = Fork)) + ylab("PC1")
ggplot(CCLE.df, aes(Order,PointScore)) +
geom_point(aes(colour = Fork)) + ylab("PointScore")
## -----------------------------------------------------------------------------
library(GSVA)
ssGSEA.test <- gsva(expr = as.matrix(CCLE.mito[CCLE.hicor.genes,]),
gset.idx.list = CCLE.groups,
method = 'gsva',
parallel.sz = 1)
ssGSEA.test[2,] <- -ssGSEA.test[2,]
CCLE.ssGSEA <- colMeans(ssGSEA.test)
## ---- dev="png"---------------------------------------------------------------
CCLE.df$ssGSEA <- CCLE.ssGSEA[CCLE.samp.sort]
ggplot(CCLE.df, aes(Order, PC1)) +
geom_point(aes(colour = Fork)) + ylab("PC1")
ggplot(CCLE.df, aes(Order, ssGSEA)) +
geom_point(aes(colour = Fork)) + ylab("ssGSEA")
## ----session_info, include=TRUE, echo=TRUE, results='markup'------------------
devtools::session_info()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.