Nothing
#' Methods for defining a bicluster
#'
#' A bicluster is the fundamental result found using MCbiclust. These
#' three functions are essential for the precise definition of these
#' biclusters.
#'
#' \code{ThresholdBic()} takes as its main inputs the correlation vector
#' (output of \code{CVEval()}), sample ordering (output of
#' \code{SampleSort()}), PC1 vector (output of \code{PC1VecFun}) and returns
#' a list of the genes and samples which belong to the bicluster according
#' to a certain level of significance.
#'
#' \code{PC1Align()} is a function used once the bicluster has been found to
#' ensure that the upper fork samples (those with higher PC1 values) correspond
#' to those samples that have genes with positive correlation vector values
#'up-regulated.
#'
#' \code{ForkClassifier()} is a function used to classify which samples are in
#' the upper or lower fork.
#'
#'
#' @param gem Gene expression matrix containing genes as rows and samples as columns.
#' @param cor.vec Correlation vector (output of \code{CVEval()}).
#' @param sort.order Order of samples (output of \code{SampleSort()}).
#' @param pc1 PC1 values for samples (output of \code{PC1VecFun}).
#' @param samp.sig Value between 0 and 1 determining number of samples in bicluster
#' @param bic bicluster (output of \code{ThresholdBic()})
#' @param samp.num Number of samples in the bicluster
#' @return Defined bicluster
#' @example example_code/example_pc1.R
#' @name ThresholdBic
NULL
#' @export
#' @rdname ThresholdBic
ThresholdBic <- function(cor.vec,sort.order,pc1,samp.sig = 0){
cor.vec.kmeans <- kmeans(abs(cor.vec),centers = 2)
genes.group1.loc <- (cor.vec.kmeans$cluster == 1)
genes.group2.loc <- (cor.vec.kmeans$cluster == 2)
if(mean(abs(cor.vec)[genes.group1.loc]) >
mean(abs(cor.vec)[genes.group2.loc])){
bic.genes <- genes.group1.loc
}else{
bic.genes <- genes.group2.loc
}
pc1.min <- quantile(rev(pc1)[seq_len(ceiling(length(pc1) / 10))],
probs = 0 + (samp.sig/2))
pc1.max <- quantile(rev(pc1)[seq_len(ceiling(length(pc1) / 10))],
probs = 1 - (samp.sig/2))
first.no.samp <- which(pc1 > pc1.min & pc1 < pc1.max)[1]
if(length(first.no.samp) > 0){
bic.samps <- sort.order[seq_len(first.no.samp -1)]
}else{
bic.samps <- NA
}
return(list(bic.genes, bic.samps))
}
#' @export
#' @rdname ThresholdBic
PC1Align <- function(gem, pc1, cor.vec, sort.order, bic){
max.cv.loc <- which.max(cor.vec)
number.samps <- seq_len(max(3, length(bic[[2]])))
gem1 <- gem[max.cv.loc, sort.order[number.samps]]
cor.test <- cor(as.numeric(gem1), pc1[number.samps])
if(cor.test < 0){
pc1 <- -pc1
}
return(pc1)
}
#' @export
#' @rdname ThresholdBic
ForkClassifier <- function(pc1,samp.num){
k.run1 <- kmeans(pc1[seq_len(samp.num)],2)
g1 <- (k.run1[[1]] == 1)
g2 <- (k.run1[[1]] == 2)
if(mean(pc1[g1]) > mean(pc1[g2])){
group1 <- g1
group2 <- g2
}else{
group1 <- g2
group2 <- g1
}
fork.status <- rep("None",length(pc1))
fork.status[seq_len(samp.num)][group1] <- "Upper"
fork.status[seq_len(samp.num)][group2] <- "Lower"
return(fork.status)}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.