Nothing
## ---- echo = FALSE------------------------------------------------------------
knitr::opts_chunk$set(collapse = TRUE, comment = "#>")
## ----eval=FALSE---------------------------------------------------------------
# system.file("extdata","aneuploidy.bam",package="MADSEQ")
# system.file("extdata","aneuploidy.vcf.gz",package="MADSEQ")
## -----------------------------------------------------------------------------
## load the package
suppressMessages(library("MADSEQ"))
## get path to the location of example data
aneuploidy_bam = system.file("extdata","aneuploidy.bam",package="MADSEQ")
normal_bam = system.file("extdata","normal.bam",package="MADSEQ")
target = system.file("extdata","target.bed",package="MADSEQ")
## Note: for your own data, just specify the path to the location
## of your file using character.
## prepare coverage and GC content for each targeted region
# aneuploidy sample
aneuploidy_cov = prepareCoverageGC(target_bed=target,
bam=aneuploidy_bam,
"hg19")
# normal sample
normal_cov = prepareCoverageGC(target_bed=target,
bam=normal_bam,
"hg19")
## view the first two rows of prepared coverage data (A GRanges Object)
aneuploidy_cov[1:2]
normal_cov[1:2]
## -----------------------------------------------------------------------------
## normalize coverage data
## set plot=FALSE here because similar plot will show in the following example
normalizeCoverage(aneuploidy_cov,writeToFile=TRUE, destination=".",plot=FALSE)
## -----------------------------------------------------------------------------
## normalize coverage data
aneuploidy_normed = normalizeCoverage(aneuploidy_cov,writeToFile=FALSE,
plot=FALSE)
## a GRangesList object will be produced by the function, look at it by
names(aneuploidy_normed)
aneuploidy_normed[["aneuploidy_cov"]]
## -----------------------------------------------------------------------------
## normalize coverage data
normalizeCoverage(aneuploidy_cov, normal_cov,
writeToFile =TRUE, destination = ".", plot=FALSE)
## ----fig.height=6, fig.width=6,fig.align='center'-----------------------------
## normalize coverage data
normed_without_control = normalizeCoverage(aneuploidy_cov, normal_cov,
writeToFile=FALSE, plot=TRUE)
## a GRangesList object will be produced by the function
length(normed_without_control)
names(normed_without_control)
## subsetting
normed_without_control[["aneuploidy_cov"]]
normed_without_control[["normal_cov"]]
## -----------------------------------------------------------------------------
## normalize coverage data, normal_cov is the control sample
normalizeCoverage(aneuploidy_cov, control=normal_cov,
writeToFile=TRUE, destination = ".",plot=FALSE)
## -----------------------------------------------------------------------------
normed_with_control = normalizeCoverage(aneuploidy_cov, control=normal_cov,
writeToFile =FALSE, plot=FALSE)
## a GRangesList object will be produced by the function
length(normed_without_control)
names(normed_with_control)
## -----------------------------------------------------------------------------
## specify the path to vcf.gz file
aneuploidy_vcf = system.file("extdata","aneuploidy.vcf.gz",package="MADSEQ")
## target bed file specified before
## If you choose to write the output to file (recommended)
prepareHetero(aneuploidy_vcf, target, genome="hg19",
writeToFile=TRUE, destination=".",plot = FALSE)
## If you don't want to write output to file
aneuploidy_hetero = prepareHetero(aneuploidy_vcf, target,
genome="hg19", writeToFile=FALSE,plot = FALSE)
## ----fig.height=4, fig.width=6,fig.align='center'-----------------------------
## specify the path to processed files
aneuploidy_hetero = "./aneuploidy.vcf.gz_filtered_heterozygous.txt"
aneuploidy_normed_cov = "./aneuploidy_cov_normed_depth.txt"
## run the model
aneuploidy_chr18 = runMadSeq(hetero=aneuploidy_hetero,
coverage=aneuploidy_normed_cov,
target_chr="chr18",
nChain=1, nStep=1000, thinSteps=1,
adapt=100,burnin=200)
## An MadSeq object will be returned
aneuploidy_chr18
## ----eval=FALSE---------------------------------------------------------------
# ## subset normalized coverage for aneuploidy sample from the GRangesList
# ## returned by normalizeCoverage function
# aneuploidy_normed_cov = normed_with_control[["aneuploidy_cov"]]
#
# ## run the model
# aneuploidy_chr18 = runMadSeq(hetero=aneuploidy_hetero,
# coverage=aneuploidy_normed_cov,
# target_chr="chr18")
#
# ## An MadSeq object will be returned
# aneuploidy_chr18
## ----echo=FALSE,warning=FALSE-------------------------------------------------
BIC = c("[0,10]","(10,20]",">20")
evidence = c("Probably noisy data","Could be positive",
"High confidence")
table = data.frame(BIC,evidence)
library(knitr)
kable(table,col.names =c("deltaBIC","Evidence against higher BIC") ,align="c")
## ---- fig.height=4, fig.width=6,fig.align='center'----------------------------
## plot the posterior distribution for all the parameters in selected model
plotMadSeq(aneuploidy_chr18)
## ---- fig.height=4, fig.width=4,fig.align='center'----------------------------
## plot the histogram for the estimated fraction of aneuploidy
plotFraction(aneuploidy_chr18, prob=0.95)
## ---- fig.height=4, fig.width=5,fig.align='center'----------------------------
## plot the distribution of AAF as estimated by the model
plotMixture(aneuploidy_chr18)
## ----echo=FALSE,warning=FALSE-------------------------------------------------
parameters = c("f","m","mu[1]","mu[2]","mu[3] (LOH model)",
"mu[3] (meiotic trisomy model)","mu[4]","kappa","p[1]","p[2]",
"p[3]","p[4]","p[5]","m_cov","p_cov","r_cov")
explains = c("Fraction of mosaic aneuploidy",
"The midpoint of the alternative allele frequency (AAF) for all heterozygous sites",
"Mean AAF of mixture 1: the AAFs of this mixture shifted from midpoint to some higher values",
"Mean AAF of mixture 2: the AAFs of this mixture shifted from midpoint to some lower values",
"Mean AAF of mixture 3: In LOH model, mu[3] indicates normal sites without loss of heterozygosity",
"Mean AAF of mixture 3: In meiotic model, the AAFs of this mixture shifted from 0 to some higher value",
"Mean AAF of mixture 4: the AAFs of this mixture shifted from 1 to some lower value (only in meiotic model)",
"Indicate variance of the AAF mixtures: larger kappa means smaller variance",
"Weight of mixture 1: indicate the proportion of heterozygous sites in the mixture 1",
"Weight of mixture 2: indicate the proportion of heterozygous sites in the mixture 2",
"Weight of mixture 3: indicate the proportion of heterozygous sites in the mixture 3 (only in LOH and meiotic model)",
"Weight of mixture 4: indicate the proportion of heterozygous sites in the mixture 4 (only in meiotic model)",
"Weight of outlier component: the AAF of 1% sites might not well behaved, so these sites are treated as noise.",
"Mean coverage of all the sites from the chromosome, estimated from a negative binomial distribution",
"Prob of the negative binomial distribution for the coverage",
"Another parameter (r) for the negative binomial disbribution of the coverage, small r means large variance")
table = data.frame(parameters,explains)
kable(table,col.names =c("parameters","description") ,align="c")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.