Nothing
## ---- echo=TRUE , eval=FALSE , results="hide" , message=FALSE , warning=FALSE----
# #Given a LowMACA object 'lm'
# lm <- newLowMACA(genes=c("TP53" , "TP63" , "TP73"))
# lmParams(lm)$clustal_cmd <- "/your/path/to/clustalo"
## ---- echo=TRUE , eval=TRUE,results="hide" , message=FALSE , warning=FALSE----
library(LowMACA)
#User Input
Genes <- c("ADNP","ALX1","ALX4","ARGFX","CDX4","CRX"
,"CUX1","CUX2","DBX2","DLX5","DMBX1","DRGX"
,"DUXA","ESX1","EVX2","HDX","HLX","HNF1A"
,"HOXA1","HOXA2","HOXA3","HOXA5","HOXB1","HOXB3"
,"HOXD3","ISL1","ISX","LHX8")
Pfam <- "PF00046"
## ---- echo=TRUE---------------------------------------------------------------
#Construct the object
lm <- newLowMACA(genes=Genes, pfam=Pfam)
str(lm , max.level=3)
## ---- echo=TRUE---------------------------------------------------------------
#See default parameters
lmParams(lm)
#Change some parameters
#Accept sequences even with no mutations
lmParams(lm)$min_mutation_number <- 0
#Changing selected tumor types
#Check the available tumor types in cBioPortal
available_tumor_types <- showTumorType()
head(available_tumor_types)
#Select melanoma, stomach adenocarcinoma, uterine cancer, lung adenocarcinoma,
#lung squamous cell carcinoma, colon rectum adenocarcinoma and breast cancer
lmParams(lm)$tumor_type <- c("skcm" , "stad" , "ucec" , "luad"
, "lusc" , "coadread" , "brca")
## ---- fourthchunk, echo=TRUE , eval=TRUE--------------------------------------
lm <- alignSequences(lm)
## ---- fourthchunkBis, echo=TRUE , eval=TRUE , message=FALSE , warning=FALSE----
lm <- alignSequences(lm , mail="lowmaca@gmail.com")
## ---- fifthchunck, echo=TRUE, eval=TRUE---------------------------------------
#Access to the slot alignment
myAlignment <- lmAlignment(lm)
str(myAlignment , max.level=2 , vec.len=2)
## ---- sixthchunk, echo=TRUE , eval=TRUE---------------------------------------
lm <- getMutations(lm)
lm <- mapMutations(lm)
## ---- seventhchunk2, echo=TRUE,eval=TRUE--------------------------------------
#Access to the slot mutations
myMutations <- lmMutations(lm)
str(myMutations , vec.len=3 , max.level=1)
## ---- seventhchunk, echo=TRUE,eval=TRUE---------------------------------------
myMutationFreqs <- myMutations$freq
#Showing the first genes
myMutationFreqs[ , 1:10]
## ---- eighthchunk, echo=TRUE , eval=FALSE , message=FALSE , warning=FALSE-----
# #Local Installation of clustalo
# lm <- setup(lm)
# #Web Service
# lm <- setup(lm , mail="lowmaca@gmail.com")
## ---- ninthchunk_pre , echo=TRUE , eval=TRUE----------------------------------
#Reuse the downloaded data as a toy example
myOwnData <- myMutations$data
#How myOwnData should look like for the argument repos
str(myMutations$data , vec.len=1)
#Read the mutation data repository instead of using cgdsr package
#Following the process step by step
lm <- getMutations(lm , repos=myOwnData)
#Setup in one shot
lm <- setup(lm , repos=myOwnData)
## ---- tenthchunk, echo=TRUE , eval=TRUE---------------------------------------
lm <- entropy(lm)
#Global Score
myEntropy <- lmEntropy(lm)
str(myEntropy)
#Per position score
head(myAlignment$df)
## ---- eleventhchunk, echo=TRUE------------------------------------------------
significant_muts <- lfm(lm)
#Display original mutations that formed significant clusters (column Multiple_Aln_pos)
head(significant_muts)
#What are the genes mutated in position 4 in the consensus?
genes_mutated_in_pos4 <- significant_muts[ significant_muts$Multiple_Aln_pos==4 , 'Gene_Symbol']
## ---- eleventh_2chunck , echo=TRUE--------------------------------------------
sort(table(genes_mutated_in_pos4))
## ---- echo=TRUE, eval=TRUE, results="hide"------------------------------------
bpAll(lm)
## ---- echo=TRUE, eval=TRUE, results="hide"-----------------------------------
lmPlot(lm)
## ---- protterChunk, echo=TRUE, eval=TRUE, message=FALSE, warning=FALSE--------
#This plot is saved as a png image on a temporary file
tmp <- tempfile(pattern = "homeobox_protter" , fileext = ".png")
protter(lm , filename=tmp)
## ---- out.width = "400px" , echo=FALSE , eval=TRUE----------------------------
knitr::include_graphics(tmp)
## ---- allPfamAnalysis, eval=TRUE----------------------------------------------
#Load Homeobox example
data(lmObj)
#Extract the data inside the object as a toy example
myData <- lmMutations(lmObj)$data
#Run allPfamAnalysis on every mutations
significant_muts <- allPfamAnalysis(repos=myData)
#Show the result of alignment based analysis
head(significant_muts$AlignedSequence)
#Show all the genes that harbor significant mutations
unique(significant_muts$AlignedSequence$Gene_Symbol)
#Show the result of the Single Gene based analysis
head(significant_muts$SingleSequence)
#Show all the genes that harbor significant mutations
unique(significant_muts$SingleSequence$Gene_Symbol)
## ---- summary, eval=FALSE , echo=TRUE-----------------------------------------
# library(LowMACA)
# Genes <- c("ADNP","ALX1","ALX4","ARGFX","CDX4","CRX"
# ,"CUX1","CUX2","DBX2","DLX5","DMBX1","DRGX"
# ,"DUXA","ESX1","EVX2","HDX","HLX","HNF1A"
# ,"HOXA1","HOXA2","HOXA3","HOXA5","HOXB1","HOXB3"
# ,"HOXD3","ISL1","ISX","LHX8")
# Pfam <- "PF00046"
# lm <- newLowMACA(genes=Genes , pfam=Pfam)
# lmParams(lm)$tumor_type <- c("skcm" , "stad" , "ucec" , "luad"
# , "lusc" , "coadread" , "brca")
# lmParams(lm)$min_mutation_number <- 0
# lm <- setup(lm , mail="lowmaca@gmail.com")
# lm <- entropy(lm)
# lfm(lm)
# bpAll(lm)
# lmPlot(lm)
# protter(lm)
## ---- info,echo=TRUE----------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.