Nothing
#Computes the mean squares and degrees of freedom for gene-by-#gene ANOVAs.
rowaov <-
function (eS, model=NULL)
{
if (class(eS) != 'ExpressionSet'){
stop("'eS' must be an object of class 'ExpressionSet'")
}
mat1 <- as.matrix(exprs(eS))
for (i in 1:length(varLabels(eS))) {
assign(paste("x", i, sep = ""), pData(eS)[, i])
}
if (is.null(model)) {
model <- ""
for (i in 1:length(varLabels(eS))) {
model <- paste(model, paste("x", i, sep = ""), ifelse(i <
length(varLabels(eS)), "+", ""), sep = "")
}
}
model2 <- paste("y ~", model)
mat2 <- as.matrix(mat1)
n <- dim(mat2)[2]
p <- dim(mat2)[1]
y <- t(mat2)
formobj <- as.formula(model2)
tmp <- lm(formobj, x=TRUE, data=pData(eS))
if (tmp$df <= 0) {
stop("model is overfit, try a simpler model")
}
for (i in 1:p) {
tmp2 <- mlm2lm(tmp, i)
tmp3 <- anova(tmp2)
tmp4 <- c(tmp3$Mean, tmp3$Df)
if (i == 1) {
resmat <- tmp4
}
else {
resmat <- cbind(resmat, tmp4)
}
}
dimnames(resmat) <- NULL
return(resmat)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.