Description Details Author(s) References See Also Examples
Multiple sample aCGH analysis using kernel convolution
Package: | KCsmart |
Type: | Package |
Version: | 2.9.1 |
Date: | 2011-02-21 |
License: | GPL |
Use the wrapper function 'calcSpm' to calculate the sample point matrix. Use 'findSigLevelTrad' to find a significance threshold using permutation based testing. Use 'plot' to plot the sample point matrix or 'plotScaleSpace' to plot the significant regions over multiple scales (sigmas). Use 'getSigSegments' to retrieve the significantly gained and lost regions using specific cutoffs. To use the comparative version of KCsmart, use the 'calcSpmCollection', 'compareSpmCollection' and 'getSigRegionsCompKC' functions. See the documentation of those function for details on how to use these.
Jorma de Ronde, Christiaan Klijn
Maintainer: Jorma de Ronde <j.d.ronde@nki.nl>
Identification of cancer genes using a statistical framework for multiexperiment analysis of nondiscretized array CGH data. Nucleic Acids Res. 2008 Feb;36(2):e13.
calcSpm
, findSigLevelTrad
, findSigLevelFdr
, plot
, plotScaleSpace
, getSigSegments
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | data(hsSampleData)
data(hsMirrorLocs)
spm1mb <- calcSpm(hsSampleData, hsMirrorLocs)
spm4mb <- calcSpm(hsSampleData, hsMirrorLocs, sigma=4000000)
plot(spm1mb)
plot(spm1mb, chromosomes=c(1,5,6,'X'))
siglevel1mb <- findSigLevelTrad(hsSampleData, spm1mb, n=3)
siglevel4mb <- findSigLevelTrad(hsSampleData, spm4mb, n=3)
plot(spm1mb, sigLevel=siglevel1mb)
plotScaleSpace(list(spm1mb, spm4mb), list(siglevel1mb, siglevel4mb), type='g')
sigSegments1mb <- getSigSegments(spm1mb, siglevel1mb)
spmc1mb <- calcSpmCollection(hsSampleData, hsMirrorLocs, cl=c(rep(0,10),rep(1,10)))
spmcc1mb <- compareSpmCollection(spmc1mb, nperms=3)
spmcc1mbSigRegions <- getSigRegionsCompKC(spmcc1mb)
plot(spmcc1mb, sigRegions=spmcc1mbSigRegions)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.