Nothing
#' Discretize a set of continuous data into 1-dimensional bins by "uniform width" method
#'
#' discretize1d.uniform_width assigns the observations of continuous random variables to bins according to the "uniform width" method,
#' and returns a corresponding count table.
#'
#' Uniform width-based method ("uniform_width") divides the continuous data into N bins with equal width.
#' The number of bins N is initialized into a round-off value according to the square root of the data size.
#' @param x a numeric vector of a random variable.
#'
#' @return discretize1d.uniform_width returns a count table.
#' @export
#'
#' @examples
#' # a numeric vector corresponding to a continuous random variable
#' x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
#'
#' # corresponding count table estimated by "uniform width" algorithm
#' discretize1d.uniform_width(x)
discretize1d.uniform_width <- function(x)
{
numBins <- floor(sqrt(length(x)))
r <- range(x)
b <- seq(from = r[1], to = r[2], length.out = (numBins + 1))
X <- table(cut(x, breaks = b , include.lowest = TRUE))
return(X)
}
#' Discretize two sets of continuous data into 2-dimensional bins by "uniform width" method
#'
#' discretize2d.uniform_width assigns the observations of two continuous random variables to bins according to the "uniform width" method,
#' and returns a corresponding 2-dimensional count table.
#'
#' Uniform width-based method ("uniform_width") divides the continuous data into N bins with equal width.
#' The number of bins N is initialized into a round-off value according to the square root of the data size.
#' @param x a numeric vector of the first random variable.
#' @param y a numeric vector of the second random variable.
#'
#' @return discretize2d.uniform_width returns a 2-dimensional count table.
#' @export
#'
#' @examples
#' # two numeric vectors corresponding to two continuous random variables
#' x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
#' y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.0, 9.0)
#'
#' # corresponding joint count table estimated by "uniform width" algorithm
#' discretize2d.uniform_width(x,y)
discretize2d.uniform_width <- function(x, y)
{
numBins1 <- floor(sqrt(length(x)))
numBins2 <- floor(sqrt(length(y)))
r1 <- range(x)
r2 <- range(y)
b1 <- seq(from = r1[1], to = r1[2], length.out = (numBins1 + 1))
b2 <- seq(from = r2[1], to = r2[2], length.out = (numBins2 + 1))
XY <- table(cut(x, breaks = b1, include.lowest = TRUE),
cut(y, breaks = b2, include.lowest = TRUE))
return(XY)
}
#' Discretize three sets of continuous data into 3-dimensional bins by "uniform width" method
#'
#' discretize3d.uniform_width assigns the observations of three continuous random variables to bins according to the "uniform width" method,
#' and returns a corresponding 3-dimensional count table.
#'
#' The uniform width-based method ("uniform_width") that divides the continuous data into N bins with equal width.
#' The number of bins is initialized into a round-off value according to the square root of the data size.
#' @param x a numeric vector of the first random variable.
#' @param y a numeric vector of the second random variable.
#' @param z a numeric vector of the third random variable.
#'
#' @return discretize3d.uniform_width returns a 3-dimensional count table.
#' @export
#'
#' @examples
#' # three numeric vectors corresponding to three continuous random variables
#' x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
#' y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.0, 9.0)
#' z <- c(3.0, 7.0, 2.0, 11, 10, 10, 14, 2.0, 11)
#'
#' # corresponding joint count table estimated by "uniform width" algorithm
#' discretize3d.uniform_width(x,y,z)
discretize3d.uniform_width <- function(x, y, z)
{
numBins1 <- floor(sqrt(length(x)))
numBins2 <- floor(sqrt(length(y)))
numBins3 <- floor(sqrt(length(z)))
r1 <- range(x)
r2 <- range(y)
r3 <- range(z)
b1 <- seq(from = r1[1], to = r1[2], length.out = (numBins1 + 1))
b2 <- seq(from = r2[1], to = r2[2], length.out = (numBins2 + 1))
b3 <- seq(from = r3[1], to = r3[2], length.out = (numBins3 + 1))
xyz <- table(cut(x, breaks = b1, include.lowest = TRUE),
cut(y, breaks = b2, include.lowest = TRUE),
cut(z, breaks = b3, include.lowest = TRUE))
return(xyz)
}
#' Discretize a set of continuous data into 1-dimensional bins by uniform frequency
#'
#' discretize1d.uniform_frequency assigns the observations of a continuous random variables to bins according to the "uniform frequency" method,
#' and returns a corresponding count table.
#'
#' Uniform frequency-based method ("uniform_frequency") divides the continuous data into N bins with (approximate) equal count number.
#' The number of bins N is initialized into a round-off value according to the square root of the data size.
#' @param x a numeric vector of a random variable.
#'
#' @return discretize1d.uniform_frequency returns a one-dimensional count table.
#' @export
#'
#' @examples
#' # a numeric vector corresponding to a continuous random variable
#' x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
#'
#' # corresponding count table estimated by "uniform frequency" algorithm
#' discretize1d.uniform_frequency(x)
discretize1d.uniform_frequency <- function(x)
{
X <- table(uniform_frequency(x))
return(X)
}
#' Discretize two sets of continuous data into 2-dimensional bins by uniform frequency
#'
#' discretize2d.uniform_frequency assigns the observations of two continuous random variables to bins according to the "uniform frequency" method,
#' and returns a corresponding 2-dimensional count table.
#'
#' Uniform frequency-based method ("uniform_frequency") divides the continuous data into N bins with (approximate) equal count number.
#' The number of bins N is initialized into a round-off value according to the square root of the data size.
#' @param x a numeric vector of the first random variable.
#' @param y a numeric vector of the second random variable.
#'
#' @return discretize2d.uniform_frequency returns a 2-dimensional count table.
#' @export
#'
#' @examples
#' # two numeric vectors corresponding to two continuous random variables
#' x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
#' y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.0, 9.0)
#'
#' # corresponding joint count table estimated by "uniform frequency" algorithm
#' discretize2d.uniform_frequency(x,y)
discretize2d.uniform_frequency <- function(x, y)
{
XY <- table(uniform_frequency(x),
uniform_frequency(y))
return(XY)
}
#' Discretize three sets of continuous data into 3-dimensional bins by uniform frequency
#'
#' discretize3d.uniform_frequency assigns the observations of three continuous random variables to bins according to the "uniform frequency" method,
#' and returns a corresponding 3-dimensional count table.
#'
#' Uniform frequency-based method ("uniform_frequency") divides the continuous data into N bins with (approximate) equal count number.
#' The number of bins N is initialized into a round-off value according to the square root of the data size.
#' @param x a numeric vector of the first random variable.
#' @param y a numeric vector of the second random variable.
#' @param z a numeric vector of the third random variable.
#'
#' @return discretize3d.uniform_frequency returns a 3-dimensional count table.
#' @export
#'
#' @examples
#' # three numeric vectors corresponding to three continuous random variables
#' x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
#' y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.0, 9.0)
#' z <- c(3.0, 7.0, 2.0, 11, 10, 10, 14, 2.0, 11)
#'
#' # corresponding joint count table estimated by "uniform frequency" algorithm
#' discretize3d.uniform_frequency(x,y,z)
discretize3d.uniform_frequency <- function(x, y, z)
{
xyz <- table(uniform_frequency(x),
uniform_frequency(y),
uniform_frequency(z))
return(xyz)
}
##--- the function of uniform frequency ---##
uniform_frequency <- function(data){
numBins <- floor(sqrt(length(data)))
nrepl <- floor(length(data)/numBins)
nplus <- sample(seq_len(numBins), length(data) - nrepl * numBins)
nrep <- rep(nrepl, numBins)
nrep[nplus] <- nrepl + 1
data[order(data)] <- rep(seq.int(numBins), nrep)
return(data)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.