R/normalizeData.R

Defines functions normalizeData

Documented in normalizeData

#' Normalize transcriptome sequencing data.
#' 
#' Normalize count-based measures of transcriptome sequencing data using the
#' Trimmed Means of M-values (TMM) or DESeq approach.
#'
#' @param data numeric matrix representing the counts of dimension (\emph{g} x \emph{n}), 
#' for \emph{g} genes in \emph{n} samples.
#' 
#' @param normalization Normalization method to be used to correct for differences in library sizes, with choices
#' \dQuote{TMM} (Trimmed Mean of M-values), \dQuote{DESeq} (normalization method proposed in the
#'  DESeq package), and \dQuote{none} 
#'
#' @return
#' \itemize{
#'  \item{data.norm }{A numeric matrix representing the normalized counts of dimension (\emph{g} x \emph{n}), 
#'  for \emph{g} genes in \emph{n} samples.}
#'  \item{norm.factor }{A vector of length \emph{n} giving the estimated library sizes estimated by the
#'  normalization method specified in \code{normalization}}
#' }
#' 
#' @references 
#' S. Anders and W. Huber (2010). Differential expression analysis for sequence count data.
#' \emph{Genome Biology}, 11(R106):1-28.
#' 
#' A. Rau, M. Gallopin, G. Celeux, F. Jaffrezic (2013). Data-based filtering 
#' for replicated high-throughput transcriptome sequencing experiments. \emph{Bioinformatics}, 
#' doi: 10.1093/bioinformatics/btt350.
#' 
#' M. D. Robinson and A. Oshlack (2010). A scaling normalization method for differential expression
#' analysis of RNA-seq data. \emph{Genome Biology}, 11(R25).
#' 
#' @author Andrea Rau, Melina Gallopin, Gilles Celeux, and Florence Jaffrezic
#' @export
#'
#' @examples
#' library(Biobase)
#' data("sultan")
#' normData <- normalizeData(exprs(sultan), norm="DESeq") 
#' 
#' @keywords methods
#' 
#' @importFrom utils data
#' @importFrom edgeR calcNormFactors
#' @importFrom stats median

normalizeData <-
function(data, normalization) {
	if(normalization == "TMM") {
		N <- colSums(data)
		f <- calcNormFactors(data,method="TMM")
		TMM <- N*f / mean(N*f)
		norm.factor <- TMM
		data.norm <- scale(data, center=FALSE, scale=TMM)


	}
	if(normalization == "DESeq") {
		## Code taken from DESeq (v1.8.3)
		## estimateSizeFactorsForMatrix() function:
    		loggeomeans <- rowMeans(log(data))
   		deseq <- apply(data, 2, function(cnts) exp(median((log(cnts) - 
       			loggeomeans)[is.finite(loggeomeans)])))
		norm.factor <- deseq
		data.norm <- scale(data, center=FALSE, scale=deseq)
	}
	if(normalization == "none") {
		data.norm <- data
		norm.factor <- NA
	}
	return(list(data.norm = data.norm, norm.factor = norm.factor))
}

Try the HTSFilter package in your browser

Any scripts or data that you put into this service are public.

HTSFilter documentation built on Dec. 18, 2020, 2 a.m.