Nothing
######################################################
### To estimate biological error variance by LPE ###
######################################################
par.rep.error.Olig <- function(x, q=0.01, r=rep(1,ncol(x)), df=10)
{
median.x <- apply(x, 1, median,na.rm=TRUE)
#Experimental variation
basevar.exp <- base.error.Olig(x, q = q, r=r, type="exp")
sf.x <- smooth.spline(basevar.exp[,1],basevar.exp[,2], df = df)
var.exp <- fixbound.predict.smooth.spline(sf.x, median.x)$y
#Total variation
basevar.total <- base.error.Olig(x, q = q, r=r, type="total")
sf.x <- smooth.spline(basevar.total[,1], basevar.total[,2], df = df)
var.total <- fixbound.predict.smooth.spline(sf.x, median.x)$y
#Correction on low intensities
i.max <- max(which(var.total==max(var.total)))
x.max <- median.x[i.max]
var.total[which(median.x < x.max)] <- max(var.total)
i.max <- max(which(var.exp==max(var.exp)))
x.max <- median.x[i.max]
var.exp[which(median.x < x.max)] <- max(var.exp)
x <- basevar.exp[,1]
v <- basevar.exp[,2]
i.max <- which(v==max(v))
x.max <- x[i.max]
v[which(x < x.max)] <- max(v)
basevar.exp[,2] <- v
#Biological variation
var.bio <- var.total - var.exp
basevar <- t(basevar.exp[,2:3])
return(list(m=median.x, var.exp=var.exp, var.bio=var.bio, var.total=var.total, var.e=basevar))
###return(var.bio=var.bio, var.exp=basevar)
}
######################################################
### To estimate experimental error variance by LPE ###
######################################################
nonpar.rep.error.Olig <- function(x, q=0.01, r=rep(1,ncol(x)), B=100, print.message.on.screen=TRUE)
{
basevar.x <- base.error.Olig(x, q = q, r = r, type="exp")
quan.A <- basevar.x[,3]
quan.n <- length(quan.A)
basevar <- matrix(NA,nrow=(B+1), ncol=quan.n)
for (i in 1:B) {
bootstrap.row <- sample(nrow(x), replace=TRUE)
data.generated <- x[bootstrap.row,]
result <- boot.base.error.Olig(data.generated, quantile.A=quan.A, r=r)
basevar[i,] <- t(result)
if(print.message.on.screen) cat(".")
#cat("ITERATION = ", i, " FINISHED \n")
}
#Correction on low intensities
x <- basevar.x[,3]
v <- basevar.x[,2]
i.max <- max(which(v==max(v)))+1
x.max <- x[i.max]
basevar[,which(x < x.max)] <- basevar[,i.max]
#returning
basevar[(B+1),] <- quan.A
return(basevar)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.