Nothing
############################################################
### To estimate total error variance by LPE (parametirc) ###
############################################################
par.error.Olig <- function(x, q=0.01, df=10)
{
r=(1:ncol(x)) # 1,2,3,... in one-layer HEM
median.x <- apply(x, 1, median, na.rm=TRUE)
basevar.total <- base.error.Olig(x, q = q, r=r, type="total")
sf.x <- smooth.spline(basevar.total[,1], basevar.total[,2], df = df)
var.total <- fixbound.predict.smooth.spline(sf.x, median.x)$y
#Correction on low intensities
i.max <- max(which(var.total==max(var.total)))
x.max <- median.x[i.max]
var.total[which(median.x < x.max)] <- max(var.total)
return(list(m=median.x, var.total=var.total))
}
###############################################################
### To estimate total error variance by LPE (nonparametric) ###
###############################################################
nonpar.error.Olig <- function(x, q=0.01, B=100, print.message.on.screen=TRUE)
{
r=(1:ncol(x)) # 1,2,3,... in one-layer HEM.
basevar.x <- base.error.Olig(x, q = q, r = r, type="total")
quan.A <- basevar.x[,3]
quan.n <- length(quan.A)
r = rep(1,ncol(x)) # 1,1,1,.... total error is like exp error
basevar <- matrix(NA,nrow=(B+1), ncol=quan.n)
for (i in 1:B) {
bootstrap.row <- sample(nrow(x), replace=TRUE)
data.generated <- x[bootstrap.row,]
result <- boot.base.error.Olig(data.generated,quantile.A=quan.A,r=r)
basevar[i,] <- t(result)
if(print.message.on.screen) cat(".")
#cat("ITERATION = ", i, " FINISHED \n")
}
#Correction on low intensities
x <- basevar.x[,3]
v <- basevar.x[,2]
i.max <- max(which(v==max(v)))
x.max <- x[i.max]
i <- which(x < x.max)
if(length(i) >=1) basevar[,i] <- basevar[,i.max]
basevar[(B+1),] <- quan.A
return(basevar)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.