In this example, we will generate a gene module-immune cell signature network using the GmicR pacakge. This package uses WGCNA to compresses high-dimensional expression data into module eigenegenes, which are used with bayesian learning and xCell cell signatures to infer causal relationships between gene modules and cell signatures. Expression data must be normalized (RPKM/FPKM/TPM/RSEM) and annotated with official gene symbols.
knitr::opts_chunk$set( collapse = TRUE, fig.align= "center", comment = "#>" )
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install('GmicR')
For macosx users experiencing WGCNA installation errors, try downloading a compiled version from:
For macosx users experiencing installation errors, try downloading OS X binaries from:
For this example, we are downloading microarray expression data provided by the xCell web portal. This dataset contains the expression profiles of twelve different types of human leukocytes from peripheral blood and bone marrow, before and after different treatments.
Detailed information about this dataset is available:
url <- "http://xcell.ucsf.edu/iris_u133a_expr.txt" dat_download <- data.frame(read.delim(url), row.names = 1, stringsAsFactors = FALSE, check.rows = FALSE) # data are transposed for processing datExpr0<-data.frame(t(dat_download))
WGCNA is used to for quality control of genes via the goodSamplesGenes function
library(WGCNA) gsg = goodSamplesGenes(datExpr0, verbose = 3) # columns must be genes gsg$allOK
A sampleTree can be used to check for outlier samples. For this example all samples are kept.
sampleTree = hclust(dist(datExpr0), method = "average"); par(cex = 0.6); par(mar = c(0,4,2,0)) plot(sampleTree, main = "Sample Filtering", labels = FALSE) # final expression set ---------------------------------------------------- datExpr = datExpr0
For cell signature detection using xCell, the expression data can be written to a csv file. The file can be uploaded at: http://xcell.ucsf.edu
Exps_for_xCell_analysis<-data.frame(t(datExpr), check.names = FALSE) write.csv(Exps_for_xCell_analysis, file = "Exps_for_xCell_analysis.csv")
Once you have the xCell data processed by http://xcell.ucsf.edu, you will receive an email linking to three text files. Download these files. For GmicR, the "xCell results" file is required for Step 3.
xCell_email_dir<-system.file("extdata", "xCell_email.png", package = "GmicR", mustWork = TRUE) knitr::include_graphics(xCell_email_dir)
remove(list = ls()) library(GmicR) sample_dat_dir<-system.file("extdata", "sample_dat.Rdata", package = "GmicR", mustWork = TRUE) load(sample_dat_dir)
For simplicity, we will carryout WGCNA using 1000 randomly selected genes from 50 randomly selected samples
Auto_WGCNA is a wrapper for WGCNA. Not all options are avaible. For more advanced features please use WGCNA.
library(GmicR) GMIC_Builder<-Auto_WGCNA(sample_dat, mergeCutHeight = 0.35, minModuleSize = 10, deepSplit = 4, networkType = "signed hybrid", TOMType = "unsigned", corFnc = "bicor", sft_RsquaredCut = 0.85, reassignThreshold = 1e-06, maxBlockSize = 25000)
Viewing input parameters
GMIC_Builder$Input_Parameters
Soft threshold plot
GMIC_Builder$Output_plots$soft_threshold_plot
GMIC_Builder_dir<-system.file("extdata", "GMIC_Builder.Rdata", package = "GmicR", mustWork = TRUE) load(GMIC_Builder_dir)
module clustering
GMIC_Builder$Output_plots$module_clustering
dendrogram
GMIC_Builder$Output_plots$net_dendrogram
WGCNA functions intramodularConnectivity and chooseOneHubInEachModule are used to build a dataframe with gene module information.
# Module hubs and Gene influence GMIC_Builder<-Query_Prep(GMIC_Builder, calculate_intramodularConnectivity= TRUE, Find_hubs = TRUE) head(GMIC_Builder$Query)
This function constructs a library for gene ontology enrichment, which will be used for module naming with the GO_Module_NameR function.
GMIC_Builder<-GSEAGO_Builder(GMIC_Builder, species = "Homo sapiens", ontology = "BP", no_cores = 1)
GO_Module_NameR will assign a name to each module based on ontology size. A smaller cut off size will generate a more specific term.
GMIC_Builder<-GO_Module_NameR(GMIC_Builder)
This table provides a summary of detected modules. "Freq" indicates the total genes within each module
head(GMIC_Builder$GO_table, n = 4)
A searchable dataframe is also generated
head(GMIC_Builder$GO_Query, n = 4)
For this example, we are using cell signatures provided by the GmicR package, which were generated using the xCell web portal.
file_dir<-system.file("extdata", "IRIS_xCell_sig.txt", package = "GmicR", mustWork = TRUE)
This function merges module eigengenes with xCell signatures prior to discretization. Only xCell signatures are supported. Discretization is carried out with bnlearning using "hartemink" method. For detailed information discretization see: http://www.bnlearn.com/documentation/man/preprocessing.html
GMIC_Builder_disc<-Data_Prep(GMIC_Builder, xCell_Signatures = file_dir, ibreaks=10, Remove_ME0 = TRUE) head(GMIC_Builder_disc$disc_data[sample(seq(1,64),4)])
GMIC_net_dir<-system.file("extdata", "GMIC_net.Rdata", package = "GmicR", mustWork = TRUE) load(GMIC_net_dir)
Although the default score for this function is Bayesian Dirichlet equivalent score (bde), for this example we will use the Bayesian Dirichlet sparse score (bds). For sparse data, such as the data used in this example, the bds score is better suited: https://arxiv.org/abs/1605.03884.
no_cores<-1 # multicore support cl<-parallel::makeCluster(1) GMIC_net<-bn_tabu_gen(GMIC_Builder_disc, cluster = cl, debug = FALSE, bootstraps_replicates = 50, score = "bds") parallel::stopCluster(cl) # stop cluster
For hypothesis generation, it may be helpful to distiguish positive relationships from negative. The InverseARCs function from GmicR identifies these relationships from probability distributions generated from mutilated network queries. A correlation matrix is generated and a threshold is applied to specify a slope cut off for inverse relationships. By default the threhold is set to -0.3.
GMIC_Final<-InverseARCs(GMIC_net, threshold = -0.3)
Once complete, the GMIC network can be viewed using the Gmic_viz shiny app.
GMIC_Final_dir<-system.file("extdata", "GMIC_Final.Rdata", package = "GmicR", mustWork = TRUE) load(GMIC_Final_dir) if(interactive()){ Gmic_viz(GMIC_Final) }
You can view the entire network or just a subset of nodes. Inverse relationships can be highlighted based on color and/or edge pattern.
Not all nodes are represented:
example_shiny_dir<-system.file("extdata", "example_shiny1.png", package = "GmicR", mustWork = TRUE) knitr::include_graphics(example_shiny_dir)
You can search for your favorite gene or module of interest.
example_shiny_dir<-system.file("extdata", "example_shiny2.png", package = "GmicR", mustWork = TRUE) knitr::include_graphics(example_shiny_dir)
Or view a module summary table
example_shiny_dir<-system.file("extdata", "example_shiny3.png", package = "GmicR", mustWork = TRUE) knitr::include_graphics(example_shiny_dir)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.