Nothing
### =========================================================================
### FileManager objects
### =========================================================================
### Tasks to manage:
### - (split) divide problem for parallel eval
### - (apply / MAP) function executed on workers
### - (combine / REDUCE) collate results from workers
### Thoughts:
### - Parallel exection:
### Should be optional (large data, shared memory).
###
### - chunk/yield/iterate:
### These are are independent of parallel and appropriate
### to include in apply/MAP step.
###
### - I/O considerations:
### Potential problems with parallel reduceByRange() and
### single ff or hdf5 file (all hit same file, same time).
###
### - run byFile but reduce byRange:
### Extraction of multiple ranges is more efficient
### using a param (reduceByFile approach). If memory isn't
### a problem, we may consider a fast method to combine
### elements of the list returned by bplapply() across
### list elements. This would allow the user to run byFile
### but reduce byRange.
## case 1: whole file
fl <- system.file("extdata", "ex1.bam", package="Rsamtools")
fm1 <- .FM$new(files=c(fl, fl, fl), chunkApply=countBam)
## case 2: ranges
param <- ScanBamParam(which=GRanges("seq1", IRanges(1, 20)), what="qname")
fm2 <- .FM$new(files=c(fl, fl, fl), chunkApply=scanBam)
fm2$run(param=param)
## case 3: BamFile single yield
bfl <- BamFileList(c(fl, fl, fl), yieldSize=50L)
fm3 <- .FM$new(files=bfl, chunkApply=scanBam, chunkCombine=return)
fm3$run(param=ScanBamParam(what="qname"))
## use yield_reduce
## iterators pkg icount
## case 4: roll your own yield
fun <- function(i, ...) {
open(i)
on.exit(close(i))
ans <- NULL
while (length(res <- scanBam(i, ...)[[1]]$qname))
ans <- c(ans, length(res))
ans
}
fm4 <- .FM$new(files=bfl, chunkApply=fun)
fm4$run()
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Standard S4
###
setClass("FileManager",
representation(
files="character",
chunkSplit="function",
chunkApply="function",
chunkCombine="function",
parallel="BiocParallelParam"),
prototype(
parallel=bpparam()),
validity=.validity)
## validity would confirm required methods
## constructor
FileManager <-
function(files, chunkApply,
chunkSplit = function(object) length(files),
chunkExtract = function(object, i) files[[i]],
chunkCombine = function(x) unlist(x, use.names=FALSE),
parallel=bpparam(), ...)
{
new("FileManager", files, chunkApply, chunkSplit, chunkExtract,
chunkCombine, parallel)
}
## lazy split
## load_balancing
## should have more tasks than nodes but not more than
## by a factor of 100 (or even 10?)
## sequential, non-scheduled, no knowledge of length
} else {
## pre-allocate result list to retain order
sx <- seq_along(X)
res <- vector("list", length(sx))
names(res) <- names(X)
## start as many jobs as there are cores
## don't need to wait for all jobs to finish
## can access elements of 'jobs' individually
jobid <- seq_len(cores)
jobs <- lapply(jobid,
function(i) mcparallel(FUN(X[[i]], ...),
mc.set.seed = mc.set.seed,
silent = mc.silent))
jobsp <- processID(jobs)
has.errors <- 0L
complete <- 0L
current <- lazySplit(length(X)) ## iterator
curr <- nextElem(current)
## advance curr to number of cores
while (curr < cores) curr <- nextElem(current)
while (length(i <- nextElem(current))) {
s <- selectChildren(jobs, 0.5)
if (is.null(s)) break # no children -> no hope
if (is.integer(s)) { # one or more children finished
for (ch in s) {
ji <- which(jobsp == ch)[1]
ci <- jobid[ji]
r <- readChild(ch)
if (is.raw(r)) {
child.res <- unserialize(r)
if (inherits(child.res, "try-error"))
has.errors <- has.errors + 1L
## a NULL assignment would remove it from the list
if (!is.null(child.res)) res[[ci]] <- child.res
complete <- complete + 1
} else {
complete <- complete + 1
if (length(curr <- nextElem(current))) {
# spawn a new job
nexti <- curr
jobid[ji] <- nexti
jobs[[ji]] <- mcparallel(FUN(X[[nexti]], ...),
mc.set.seed=mc.set.seed,
silent=mc.silent)
jobsp[ji] <- processID(jobs[[ji]])
}
}
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.