Nothing
## ----setup, include = FALSE-----------------------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
error = FALSE,
warning = FALSE,
eval = TRUE,
message = FALSE,
fig.width = 10
)
options(width = 100)
stopifnot(requireNamespace("htmltools"))
htmltools::tagList(rmarkdown::html_dependency_font_awesome())
## ----install, eval=FALSE--------------------------------------------------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#
# BiocManager::install("GeneTonic")
## ----loadlib, eval = TRUE-------------------------------------------------------------------------
library("GeneTonic")
## ----launchapp, eval=FALSE------------------------------------------------------------------------
# GeneTonic(dds = dds_object,
# res_de = res_de_object,
# res_enrich = res_enrich_object,
# annotation_obj = annotation_object,
# project_id = "myFirstGeneTonic")
## ----examplerun, eval=FALSE-----------------------------------------------------------------------
# example("GeneTonic", ask = FALSE)
## ----create_dds, eval=TRUE------------------------------------------------------------------------
library("macrophage")
library("DESeq2")
data("gse", package = "macrophage")
dds_macrophage <- DESeqDataSet(gse, design = ~line + condition)
# changing the ids to Ensembl instead of the Gencode used in the object
rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
dds_macrophage
## ----create_resde1, eval = TRUE-------------------------------------------------------------------
keep <- rowSums(counts(dds_macrophage) >= 10) >= 6
dds_macrophage <- dds_macrophage[keep, ]
dds_macrophage
## ----create_resde2, eval = FALSE------------------------------------------------------------------
# dds_macrophage <- DESeq(dds_macrophage)
# # vst_macrophage <- vst(dds_macrophage)
# res_macrophage_IFNg_vs_naive <- results(dds_macrophage,
# contrast = c("condition", "IFNg", "naive"),
# lfcThreshold = 1, alpha = 0.05)
# res_macrophage_IFNg_vs_naive$SYMBOL <- rowData(dds_macrophage)$SYMBOL
## ----load_resde, eval=TRUE------------------------------------------------------------------------
## To speed up the operations in the vignette, we can also load this object directly
data("res_de_macrophage")
head(res_macrophage_IFNg_vs_naive)
## ----create_resenrich1, eval=TRUE-----------------------------------------------------------------
library("AnnotationDbi")
de_symbols_IFNg_vs_naive <- deseqresult2df(res_macrophage_IFNg_vs_naive, FDR = 0.05)$SYMBOL
bg_ids <- rowData(dds_macrophage)$SYMBOL[rowSums(counts(dds_macrophage)) > 0]
## ----create_resenrich2, eval=FALSE----------------------------------------------------------------
# library("topGO")
# topgoDE_macrophage_IFNg_vs_naive <-
# pcaExplorer::topGOtable(de_symbols_IFNg_vs_naive,
# bg_ids,
# ontology = "BP",
# mapping = "org.Hs.eg.db",
# geneID = "symbol",
# topTablerows = 500)
## ----load_resenrich, eval=TRUE--------------------------------------------------------------------
## To speed up the operations in the vignette, we also load this object directly
data("res_enrich_macrophage")
head(topgoDE_macrophage_IFNg_vs_naive, 2)
## ----convert_resenrich, eval=TRUE-----------------------------------------------------------------
res_enrich_macrophage <- shake_topGOtableResult(topgoDE_macrophage_IFNg_vs_naive)
colnames(res_enrich_macrophage)
## ----create_anno, eval=TRUE-----------------------------------------------------------------------
library("org.Hs.eg.db")
anno_df <- data.frame(
gene_id = rownames(dds_macrophage),
gene_name = mapIds(org.Hs.eg.db, keys = rownames(dds_macrophage), column = "SYMBOL", keytype = "ENSEMBL"),
stringsAsFactors = FALSE,
row.names = rownames(dds_macrophage)
)
## alternatively:
# anno_df <- pcaExplorer::get_annotation_orgdb(dds_macrophage, "org.Hs.eg.db", "ENSEMBL")
## ----aggr_enrich, eval=TRUE-----------------------------------------------------------------------
res_enrich_macrophage <- get_aggrscores(res_enrich = res_enrich_macrophage,
res_de = res_macrophage_IFNg_vs_naive,
annotation_obj = anno_df,
aggrfun = mean)
## ----dryrun, eval=FALSE---------------------------------------------------------------------------
# GeneTonic(dds = dds_macrophage,
# res_de = res_macrophage_IFNg_vs_naive,
# res_enrich = res_enrich_macrophage,
# annotation_obj = anno_df,
# project_id = "GT1")
## ----starthappyhour, eval = FALSE-----------------------------------------------------------------
# happy_hour(dds = dds_macrophage,
# res_de = res_de,
# res_enrich = res_enrich,
# annotation_obj = anno_df,
# project_id = "examplerun",
# mygenesets = res_enrich$gs_id[c(1:5,11,31)],
# mygenes = c("ENSG00000125347",
# "ENSG00000172399",
# "ENSG00000137496")
# )
## ----enhancetable---------------------------------------------------------------------------------
p <- enhance_table(res_enrich_macrophage,
res_macrophage_IFNg_vs_naive,
n_gs = 30,
annotation_obj = anno_df,
chars_limit = 60)
p
library("plotly")
ggplotly(p)
## ----alluvial-------------------------------------------------------------------------------------
gs_alluvial(res_enrich = res_enrich_macrophage,
res_de = res_macrophage_IFNg_vs_naive,
annotation_obj = anno_df,
n_gs = 4)
## ----ggs------------------------------------------------------------------------------------------
ggs <- ggs_graph(res_enrich_macrophage,
res_de = res_macrophage_IFNg_vs_naive,
anno_df,
n_gs = 20)
ggs
# could be viewed interactively with
library(visNetwork)
library(magrittr)
ggs %>%
visIgraph() %>%
visOptions(highlightNearest = list(enabled = TRUE,
degree = 1,
hover = TRUE),
nodesIdSelection = TRUE)
## ----summaryrep-----------------------------------------------------------------------------------
em <- enrichment_map(res_enrich_macrophage,
res_macrophage_IFNg_vs_naive,
n_gs = 30,
anno_df)
library("igraph")
library("visNetwork")
library("magrittr")
em %>%
visIgraph() %>%
visOptions(highlightNearest = list(enabled = TRUE,
degree = 1,
hover = TRUE),
nodesIdSelection = TRUE)
## -------------------------------------------------------------------------------------------------
distilled <- distill_enrichment(res_enrich_macrophage,
res_macrophage_IFNg_vs_naive,
anno_df,
n_gs = 60,
cluster_fun = "cluster_markov")
DT::datatable(distilled$distilled_table[,1:4])
dim(distilled$distilled_table)
DT::datatable(distilled$res_enrich[,])
dg <- distilled$distilled_em
library("igraph")
library("visNetwork")
library("magrittr")
# defining a color palette for nicer display
colpal <- colorspace::rainbow_hcl(length(unique(V(dg)$color)))[V(dg)$color]
V(dg)$color.background <- scales::alpha(colpal, alpha = 0.8)
V(dg)$color.highlight <- scales::alpha(colpal, alpha = 1)
V(dg)$color.hover <- scales::alpha(colpal, alpha = 0.5)
V(dg)$color.border <- "black"
visNetwork::visIgraph(dg) %>%
visOptions(highlightNearest = list(enabled = TRUE,
degree = 1,
hover = TRUE),
nodesIdSelection = TRUE,
selectedBy = "membership")
## ----volcano--------------------------------------------------------------------------------------
gs_volcano(res_enrich_macrophage,
p_threshold = 0.05,
color_by = "aggr_score",
volcano_labels = 10,
gs_ids = NULL,
plot_title = "my volcano")
res_enrich_simplified <- gs_simplify(res_enrich_macrophage,
gs_overlap = 0.7)
dim(res_enrich_macrophage)
dim(res_enrich_simplified)
gs_volcano(res_enrich_simplified,
color_by = "aggr_score")
## ----dendro---------------------------------------------------------------------------------------
gs_dendro(res_enrich_macrophage,
n_gs = 50,
gs_dist_type = "kappa",
clust_method = "ward.D2",
color_leaves_by = "z_score",
size_leaves_by = "gs_pvalue",
color_branches_by = "clusters",
create_plot = TRUE)
## ----mds------------------------------------------------------------------------------------------
gs_mds(res_enrich_macrophage,
res_macrophage_IFNg_vs_naive,
anno_df,
n_gs = 200,
gs_ids = NULL,
similarity_measure = "kappa_matrix",
mds_k = 2,
mds_labels = 5,
mds_colorby = "z_score",
gs_labels = NULL,
plot_title = NULL)
## ----overview-------------------------------------------------------------------------------------
gs_summary_overview(res_enrich_macrophage,
n_gs = 30,
p_value_column = "gs_pvalue",
color_by = "z_score")
## ----sumheat--------------------------------------------------------------------------------------
gs_summary_heat(res_enrich_macrophage,
res_macrophage_IFNg_vs_naive,
anno_df,
n_gs = 20)
## ----scoresheat-----------------------------------------------------------------------------------
vst_macrophage <- vst(dds_macrophage)
scores_mat <- gs_scores(
se = vst_macrophage,
res_de = res_macrophage_IFNg_vs_naive,
res_enrich = res_enrich_macrophage,
annotation_obj = anno_df
)
gs_scoresheat(scores_mat,
n_gs = 30)
## ----happyhour, eval=FALSE------------------------------------------------------------------------
# happy_hour(dds = dds_macrophage,
# res_de = res_de,
# res_enrich = res_enrich,
# annotation_obj = anno_df,
# project_id = "examplerun",
# mygenesets = res_enrich$gs_id[c(1:5,11,31)],
# mygenes = c("ENSG00000125347",
# "ENSG00000172399",
# "ENSG00000137496")
# )
## ----template-------------------------------------------------------------------------------------
template_rmd <- system.file("extdata",
"cocktail_recipe.Rmd",
package = "GeneTonic")
template_rmd
## ----comparepair----------------------------------------------------------------------------------
# generating some shuffled gene sets
res_enrich2 <- res_enrich_macrophage[1:50, ]
set.seed(42)
shuffled_ones <- sample(seq_len(50)) # to generate permuted p-values
res_enrich2$gs_pvalue <- res_enrich2$gs_pvalue[shuffled_ones]
res_enrich2$z_score <- res_enrich2$z_score[shuffled_ones]
res_enrich2$aggr_score <- res_enrich2$aggr_score[shuffled_ones]
gs_summary_overview_pair(res_enrich = res_enrich_macrophage,
res_enrich2 = res_enrich2,
n_gs = 25)
## ----compare4-------------------------------------------------------------------------------------
res_enrich2 <- res_enrich_macrophage[1:42, ]
res_enrich3 <- res_enrich_macrophage[1:42, ]
res_enrich4 <- res_enrich_macrophage[1:42, ]
set.seed(2*42)
shuffled_ones_2 <- sample(seq_len(42)) # to generate permuted p-values
res_enrich2$gs_pvalue <- res_enrich2$gs_pvalue[shuffled_ones_2]
res_enrich2$z_score <- res_enrich2$z_score[shuffled_ones_2]
res_enrich2$aggr_score <- res_enrich2$aggr_score[shuffled_ones_2]
set.seed(3*42)
shuffled_ones_3 <- sample(seq_len(42)) # to generate permuted p-values
res_enrich3$gs_pvalue <- res_enrich3$gs_pvalue[shuffled_ones_3]
res_enrich3$z_score <- res_enrich3$z_score[shuffled_ones_3]
res_enrich3$aggr_score <- res_enrich3$aggr_score[shuffled_ones_3]
set.seed(4*42)
shuffled_ones_4 <- sample(seq_len(42)) # to generate permuted p-values
res_enrich4$gs_pvalue <- res_enrich4$gs_pvalue[shuffled_ones_4]
res_enrich4$z_score <- res_enrich4$z_score[shuffled_ones_4]
res_enrich4$aggr_score <- res_enrich4$aggr_score[shuffled_ones_4]
compa_list <- list(
scenario2 = res_enrich2,
scenario3 = res_enrich3,
scenario4 = res_enrich4
)
gs_horizon(res_enrich_macrophage,
compared_res_enrich_list = compa_list,
n_gs = 20,
sort_by = "clustered")
## ----compareradar---------------------------------------------------------------------------------
# with only one set
gs_radar(res_enrich = res_enrich_macrophage)
# with a dataset to compare against
gs_radar(res_enrich = res_enrich_macrophage,
res_enrich2 = res_enrich2)
## ----misc-----------------------------------------------------------------------------------------
head(deseqresult2df(res_macrophage_IFNg_vs_naive))
# to make sure normalized values are available...
dds_macrophage <- estimateSizeFactors(dds_macrophage)
gene_plot(dds_macrophage,
gene = "ENSG00000125347",
intgroup = "condition",
annotation_obj = anno_df,
plot_type = "auto")
gene_plot(dds_macrophage,
gene = "ENSG00000174944",
intgroup = "condition",
assay = "abundance",
annotation_obj = anno_df,
plot_type = "auto")
geneinfo_2_html("IRF1")
## ----gsheatmap------------------------------------------------------------------------------------
gs_heatmap(se = vst_macrophage,
res_de = res_macrophage_IFNg_vs_naive,
res_enrich = res_enrich_macrophage,
annotation_obj = anno_df,
geneset_id = "GO:0060337" ,
cluster_columns = TRUE,
anno_col_info = "condition"
)
go_2_html("GO:0060337",
res_enrich = res_enrich_macrophage)
## ----shakers, eval=FALSE--------------------------------------------------------------------------
# res_enrich <- shake_enrichResult(enrichment_results_from_clusterProfiler)
# res_enrich <- shake_topGOtableResult(enrichment_results_from_topGOtable)
## ----checkup--------------------------------------------------------------------------------------
checkup_GeneTonic(dds = dds_macrophage,
res_de = res_macrophage_IFNg_vs_naive,
res_enrich = res_enrich_macrophage,
annotation_obj = anno_df)
# if all is fine, it should return an invisible NULL and a simple message
## ----cite-----------------------------------------------------------------------------------------
citation("GeneTonic")
## ----sessioninfo----------------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.